1,479 research outputs found
Spin transmission through quantum dots with strong spin-orbit interaction
Quantum oscillations of the spin conductance through regular and chaotic 2D
quantum dots under the varying Rashba spin orbit interaction and at zero
magnetic field have been numerically calculated by summing up the spin
evolution matrices for classical transmitting trajectories. Fourier analysis of
these oscillations showed power spectra strongly dependent on the dot geometry.
For narrow rings the spectra are dominated by a single peak in accordance with
previous analytic results. In other geometries the spectra are represented by
multiple peaks for regular QD and quasicontinuum for chaotic QD.Comment: 10 pages, 5 figure
Evolving temporal association rules with genetic algorithms
A novel framework for mining temporal association rules by discovering itemsets with a genetic algorithm is introduced. Metaheuristics have been applied to association rule mining, we show the efficacy of extending this to another variant - temporal association rule mining. Our framework is an enhancement to existing temporal association rule mining methods as it employs a genetic algorithm to simultaneously search the rule space and temporal space. A methodology for validating the ability of the proposed framework isolates target temporal itemsets in synthetic datasets. The Iterative Rule Learning method successfully discovers these targets in datasets with varying levels of difficulty
A Pyramid Scheme for Particle Physics
We introduce a new model, the Pyramid Scheme, of direct mediation of SUSY
breaking, which is compatible with the idea of Cosmological SUSY Breaking
(CSB). It uses the trinification scheme of grand unification and avoids
problems with Landau poles in standard model gauge couplings. It also avoids
problems, which have recently come to light, associated with rapid stellar
cooling due to emission of the pseudo Nambu-Goldstone Boson (PNGB) of
spontaneously broken hidden sector baryon number. With a certain pattern of
R-symmetry breaking masses, a pattern more or less required by CSB, the Pyramid
Scheme leads to a dark matter candidate that decays predominantly into leptons,
with cross sections compatible with a variety of recent observations. The dark
matter particle is not a thermal WIMP but a particle with new strong
interactions, produced in the late decay of some other scalar, perhaps the
superpartner of the QCD axion, with a reheat temperature in the TeV range. This
is compatible with a variety of scenarios for baryogenesis, including some
novel ones which exploit specific features of the Pyramid Scheme.Comment: JHEP Latex, 32 pages, 1 figur
Vacuum stability and the Cholesky decomposition
We discuss how the Cholesky decomposition may be used to ascertain whether a
critical point of the field theory scalar potential provides a stable vacuum
configuration. We then use this method to derive the stability conditions in a
specific example.Comment: 7 page
Resonant tunneling and the multichannel Kondo problem: the quantum Brownian motion description
We study mesoscopic resonant tunneling as well as multichannel Kondo problems
by mapping them to a first-quantized quantum mechanical model of a particle
moving in a multi-dimensional periodic potential with Ohmic dissipation. From a
renormalization group analysis, we obtain phase diagrams of the quantum
Brownian motion model with various lattice symmetries. For a symmorphic
lattice, there are two phases at T=0: a localized phase in which the particle
is trapped in a potential minimum, and a free phase in which the particle is
unaffected by the periodic potential. For a non-symmorphic lattice, however,
there may be an additional intermediate phase in which the particle is neither
localized nor completely free. The fixed point governing the intermediate phase
is shown to be identical to the well-known multichannel Kondo fixed point in
the Toulouse limit as well as the resonance fixed point of a quantum dot model
and a double-barrier Luttinger liquid model. The mapping allows us to compute
the fixed-poing mobility of the quantum Brownian motion model exactly,
using known conformal-field-theory results of the Kondo problem. From the
mobility, we find that the peak value of the conductance resonance of a
spin-1/2 quantum dot problem is given by . The scaling form of the
resonance line shape is predicted
Confirmation of Anomalous Dynamical Arrest in attractive colloids: a molecular dynamics study
Previous theoretical, along with early simulation and experimental, studies
have indicated that particles with a short-ranged attraction exhibit a range of
new dynamical arrest phenomena. These include very pronounced reentrance in the
dynamical arrest curve, a logarithmic singularity in the density correlation
functions, and the existence of `attractive' and `repulsive' glasses. Here we
carry out extensive molecular dynamics calculations on dense systems
interacting via a square-well potential. This is one of the simplest systems
with the required properties, and may be regarded as canonical for interpreting
the phase diagram, and now also the dynamical arrest. We confirm the
theoretical predictions for re-entrance, logarithmic singularity, and give the
first direct evidence of the coexistence, independent of theory, of the two
coexisting glasses. We now regard the previous predictions of these phenomena
as having been established.Comment: 15 pages,15 figures; submitted to Phys. Rev.
New angles on top quark decay to a charged Higgs
To properly discover a charged Higgs Boson () requires its spin and
couplings to be determined. We investigate how to utilize \ttbar spin
correlations to analyze the couplings in the decay . Within the framework of a general Two-Higgs-Doublet Model, we
obtain results on the spin analyzing coefficients for this decay and study in
detail its spin phenomenology, focusing on the limits of large and small values
for . Using a Monte Carlo approach to simulate full hadron-level
events, we evaluate systematically how the decay
mode can be used for spin analysis. The most promising observables are obtained
from azimuthal angle correlations in the transverse rest frames of
. This method is particularly useful for determining the coupling
structure of in the large limit, where differences from the
SM are most significant.Comment: 28 pages, 13 figures. Uses JHEP forma
Statistics of Coulomb blockade peak spacings for a partially open dot
We show that randomness of the electron wave functions in a quantum dot
contributes to the fluctuations of the positions of the conductance peaks. This
contribution grows with the conductance of the junctions connecting the dot to
the leads. It becomes comparable with the fluctuations coming from the
randomness of the single particle spectrum in the dot while the Coulomb
blockade peaks are still well-defined. In addition, the fluctuations of the
peak spacings are correlated with the fluctuations of the conductance peak
heights.Comment: 13 pages, 1 figur
Dark Matter with Dirac and Majorana Gaugino Masses
We consider the minimal supersymmetric extension of the Standard Model
allowing both Dirac and Majorana gauginos. The Dirac masses are obtained by
pairing up extra chiral multiplets: a singlet S for U(1)_Y, a triplet T for
SU(2) and an octet O for SU(3) with the respective gauginos. The electroweak
symmetry breaking sector is modified by the couplings of the new fields S and T
to the Higgs doublets. We discuss two limits: i) both the adjoint scalars are
decoupled with the main effect being the modification of the Higgs quartic
coupling; ii) the singlet remaining light, and due to its direct coupling to
sfermions, providing a new contribution to the soft masses and inducing new
decay/production channels. We discuss the LSP in this scenario; after
mentioning the possibility that it may be a Dirac gravitino, we focus on the
case where it is identified with the lightest neutralino, and exhibit
particular values of the parameter space where the relic density is in
agreement with WMAP data. This is illustrated for different scenarios where the
LSP is either a bino (in which case it can be a Dirac fermion) or
bino-higgsino/wino mixtures. We also point out in each case the peculiarity of
the model with respect to dark matter detection experiments.Comment: 43 pages, 5 figures; one reference added. Corresponds to published
version in JCA
- …