1,224 research outputs found

    Protecting the Baryon Asymmetry with Thermal Masses

    Full text link
    We consider the evolution of baryon number BB in the early universe under the influence of rapid sphaleron interactions and show that BB will remain nonzero at all times even in the case of BL=0B-L = 0. This result arises due to thermal Yukawa interactions that cause nonidentical dispersion relations (thermal masses) for different lepton families. We point out the relevance of our result to the Affleck-Dine type baryogenesis.Comment: 11pp., plain tex, UMN-TH-1248/94, CfPA-TH-94-1

    A unique Valanginian paleoenvironment at an iron ore deposit near Zengővárkony (Mecsek Mts, South Hungary), and a possible genetic model

    Get PDF
    Abstract The spatially restricted Early Valanginian iron ore (limonite) and manganese deposit at Zengõvárkony (Mecsek Mts, southern Hungary) contains a rich, strongly limonitized, remarkably large-sized (specimens are 30–70% larger than those at their type localities) brachiopod-dominated (mainly Lacunosella and Nucleata) megafauna and a diverse crustacean microfauna, which indicates a shallow, nutrient-rich environment possibly linked to an uplifted block, and/or a hydrothermal vent

    The ATLAS discovery potential for MSSM neutral Higgs bosons decaying to a mu+mu- pair in the mass range up to 130 GeV

    Get PDF
    Results are presented on the discovery potential for MSSM neutral Higgs bosons in the Mh-{max}scenario. The region of large tan beta, between 15 and 50, and mass between ~ 95 and 130 GeV is considered in the framework of the ATLAS experiment at the Large Hadron Collider (LHC), for a centre-of-mass energy = 14 TeV. This parameter region is not fully covered by the present data either from LEP or from Tevatron. The h/A bosons, supposed to be very close in mass in that region, are studied in the channel h/A -> mu+mu- accompanied by two b-jets. The study includes a method to control the most copious background, Zo -> mu+mu- accompanied by two b-jets. A possible contribution of the H boson to the signal is also considered

    Mass Loss Due to Sputtering and Thermal Processes in Meteoroid Ablation

    Full text link
    Conventional meteoroid theory assumes that the dominant mode of ablation is by evaporation following intense heating during atmospheric flight. In this paper we consider the question of whether sputtering may provide an alternative disintegration process of some importance.For meteoroids in the mass range from 10^-3 to 10^-13 kg and covering a meteor velocity range from 11 to 71 km/s, we numerically modeled both thermal ablation and sputtering ablation during atmospheric flight. We considered three meteoroid models believed to be representative of asteroidal (3300 kg m^-3 mass density), cometary (1000 kg m^-3) and porous cometary (300 kg m^-3) meteoroid structures. Atmospheric profiles which considered the molecular compositions at different heights were used in the sputtering calculations. We find that while in many cases (particularly at low velocities and for relatively large meteoroid masses) sputtering contributes only a small amount of mass loss during atmospheric flight, in some cases sputtering is very important. For example, a 10^-10 kg porous meteoroid at 40 km/s will lose nearly 51% of its mass by sputtering, while a 10^-13 kg asteroidal meteoroid at 60 km/s will lose nearly 83% of its mass by sputtering. We argue that sputtering may explain the light production observed at very great heights in some Leonid meteors. The impact of this work will be most dramatic for very small meteoroids such as those observed with large aperture radars.Comment: in pdf form, 48 pgs incl figures and table

    Fluctuations and Instabilities of Ferromagnetic Domain Wall pairs in an External Magnetic Field

    Full text link
    Soliton excitations and their stability in anisotropic quasi-1D ferromagnets are analyzed analytically. In the presence of an external magnetic field, the lowest lying topological excitations are shown to be either soliton-soliton or soliton-antisoliton pairs. In ferromagnetic samples of macro- or mesoscopic size, these configurations correspond to twisted or untwisted pairs of Bloch walls. It is shown that the fluctuations around these configurations are governed by the same set of operators. The soliton-antisoliton pair has exactly one unstable mode and thus represents a critical nucleus for thermally activated magnetization reversal in effectively one-dimensional systems. The soliton-soliton pair is stable for small external fields but becomes unstable for large magnetic fields. From the detailed expression of this instability threshold and an analysis of nonlocal demagnetizing effects it is shown that the relative chirality of domain walls can be detected experimentally in thin ferromagnetic films. The static properties of the present model are equivalent to those of a nonlinear sigma-model with anisotropies. In the limit of large hard-axis anisotropy the model reduces to a double sine-Gordon model.Comment: 15 pages RevTex 3.0 (twocolumn), 9 figures available on request, to appear in Phys Rev B, Dec (1994

    Time Variations in the Scale of Grand Unification

    Get PDF
    We study the consequences of time variations in the scale of grand unification, MUM_U, when the Planck scale and the value of the unified coupling at the Planck scale are held fixed. We show that the relation between the variations of the low energy gauge couplings is highly model dependent. It is even possible, in principle, that the electromagnetic coupling α\alpha varies, but the strong coupling α3\alpha_3 does not (to leading approximation). We investigate whether the interpretation of recent observations of quasar absorption lines in terms of time variation in α\alpha can be accounted for by time variation in MUM_U. Our formalism can be applied to any scenario where a time variation in an intermediate scale induces, through threshold corrections, time variations in the effective low scale couplings.Comment: 14 pages, revtex4; Updated observational results and improved statistical analysis (section IV); added reference

    A comprehensive categorical and bibliometric analysis of published research articles on pediatric pain from 1975-2010

    Get PDF
    The field of pediatric pain research began in the mid-1970's and has undergone significant growth and development in recent years as evidenced by the variety of books, conferences, and journals on the topic as well as the number of disciplines engaged in work in this area. Using categorical and bibliometric meta-trend analysis, the current study offers a synthesis of research on pediatric pain published between 1975 and 2010 in peer-reviewed journals. Abstracts from 4256 articles, retrieved from Web of Science, were coded across four categories: article type, article topic, type and age of participants, and pain stimulus. The affiliation of the first author and number of citations were also gathered. The results suggest a significant increase in the number of publications over the time period investigated, with 96% of the included articles published since 1990 and most research being multi-authored publications in pain- focused journals. First authors were most often from the United States, and affiliated with a medical department. The majority of studies were original research articles; the most frequent topics were pain characterization (39.86%), pain intervention (37.49%), and pain assessment (25.00%). Clinical samples were most frequent, with participants most often characterized as children (6-12 years) or adolescents (13-18 years) experiencing chronic or acute pain. The findings provide a comprehensive overview of contributions in the field of pediatric pain research over 35 years and offers recommendations for future research in the area. (C) 2015 International Association for the Study of Pai

    Parent Skills Training: Expanding School-Based Services for Adolescent Mothers

    Full text link
    This article reports the results of a collaborative intervention effort between a teen-parent program and a school of social work Social work faculty and students participated in a program aimed at strengthening parental skills and the utilization of social support among adolescent mothers who were enrolled in a special high school program. The results of this evaluation study point to additional factors, such as empathy training and stress management, which need to be included in a comprehensive service-delivery program for school-age mothers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68359/2/10.1177_104973159200200203.pd

    First insights from the Flood Resilience Measurement Tool: A large-scale community flood resilience analysis

    Get PDF
    A major gap in understanding community flood resilience is a lack of an empirically validated measure of it. To fill this gap, the Zurich Flood Resilience Alliance developed an approach to test and validate a measure of community flood resilience. The approach holistically measures a set of sources of community flood resilience and, when floods occur, it also measures resilient outcomes (level of loss and recovery time). The data is collected and assessed via a web and mobile based measurement tool. Here we report results from data collected in 118 communities across 9 countries using mixed method data collection approaches. This study represents the first large scale analysis of systemic and replicable flood resilience baseline data. The learnings from the analysis provide insights into sources of community flood resilience as a first step to building an evidence based approach to building effective flood resilience capacity

    Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation

    Full text link
    We propose a theory which deals with the structure and interactions of volume elements in liquid helium II. The approach consists of two nested models linked via parametric space. The short-wavelength part describes the interior structure of the fluid element using a non-perturbative approach based on the logarithmic wave equation; it suggests the Gaussian-like behaviour of the element's interior density and interparticle interaction potential. The long-wavelength part is the quantum many-body theory of such elements which deals with their dynamics and interactions. Our approach leads to a unified description of the phonon, maxon and roton excitations, and has noteworthy agreement with experiment: with one essential parameter to fit we reproduce at high accuracy not only the roton minimum but also the neighboring local maximum as well as the sound velocity and structure factor.Comment: 9 pages, 6 figure
    corecore