400 research outputs found

    Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor

    Get PDF
    AbstractThe thermophilic cyanobacterium Thermosynechococcus elongatus was cultivated under controlled growth conditions using a new type of photobioreactor, allowing us to optimise growth conditions and the biomass yield. A fast large-scale purification method for monomeric and dimeric photosystem II (PSII) solubilized from thylakoid membranes of this cyanobacterium was developed using fast protein liquid chromatography (FPLC). The obtained PSII core complexes (PSIIcc) were analysed for their pigment stoichiometry, photochemical and oxygen evolution activities, as well as lipid and detergent composition. Thirty-six chlorophyll a (Chla), 2 pheophytin a (Pheoa), 9± 1 ÎČ-carotene (Car), 2.9±0.8 plastoquinone 9 (PQ9) and 3.8±0.5 Mn were found per active centre. For the monomeric and dimeric PSIIcc, 18 and 20 lipid as well as 145 and 220 detergent molecules were found in the detergent shell, respectively. The monomeric and dimeric complexes showed high oxygen evolution activity with 1/4 O2 released per 37–38 Chla and flash in the best cases. Crystals were obtained from dimeric PSIIcc by a micro-batch method. They diffract synchrotron X-rays to a maximum resolution of 2.9-Å, resulting in complete data sets of 3.2 Å resolution

    The fastest unbound star in our Galaxy ejected by a thermonuclear supernova

    Get PDF
    Hypervelocity stars (HVS) travel with velocities so high, that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US\,708. Travelling with a velocity of ∌1200 km s−1\sim1200\,{\rm km\,s^{-1}}, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVS. Furthermore, we discovered US\,708 to be a fast rotator. According to our binary evolution model it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova.Comment: 16 pages report, 20 pages supplementary material

    Double-helix Wilson loops: case of two angular momenta

    Full text link
    Recently, Wilson loops with the shape of a double helix have played an important role in studying large spin operators in gauge theories. They correspond to a quark and an anti-quark moving in circles on an S3 (and therefore each of them describes a helix in RxS3). In this paper we consider the case where the particles have two angular momenta on the S3. The string solution corresponding to such Wilson loop can be found using the relation to the Neumann-Rosochatius system allowing the computation of the energy and angular momenta of the configuration. The particular case of only one angular momentum is also considered. It can be thought as an analytic continuation of the rotating strings which are dual to operators in the SL(2) sector of N=4 SYM.Comment: 30 pages, 2 figures, LaTeX. v2: Small corrections, reference adde

    Impure Aspects of Supersymmetric Wilson Loops

    Get PDF
    We study a general class of supersymmetric Wilson loops operator in N = 4 super Yang-Mills theory, obtained as orbits of conformal transformations. These loops are the natural generalization of the familiar circular Wilson-Maldacena operator and their supersymmetric properties are encoded into a Killing spinor that is not pure. We present a systematic analysis of their scalar couplings and of the preserved supercharges, modulo the action of the global symmetry group, both in the compact and in the non-compact case. The quantum behavior of their expectation value is also addressed, in the simplest case of the Lissajous contours: explicit computations at weak-coupling, through Feynman diagrams expansion, and at strong-coupling, by means of AdS/CFT correspondence, suggest the possibility of an exact evaluation.Comment: 40 pages, 4 figure

    Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)

    An NLO QCD analysis of inclusive cross-section and jet-production data from the ZEUS experiment

    Full text link
    The ZEUS inclusive differential cross-section data from HERA, for charged and neutral current processes taken with e+ and e- beams, together with differential cross-section data on inclusive jet production in e+ p scattering and dijet production in \gamma p scattering, have been used in a new NLO QCD analysis to extract the parton distribution functions of the proton. The input of jet data constrains the gluon and allows an accurate extraction of \alpha_s(M_Z) at NLO; \alpha_s(M_Z) = 0.1183 \pm 0.0028(exp.) \pm 0.0008(model) An additional uncertainty from the choice of scales is estimated as \pm 0.005. This is the first extraction of \alpha_s(M_Z) from HERA data alone.Comment: 37 pages, 14 figures, to be submitted to EPJC. PDFs available at http://durpdg.dur.ac.uk/hepdata in LHAPDFv

    Jet production in charged current deep inelastic eâșp scatteringat HERA

    Get PDF
    The production rates and substructure of jets have been studied in charged current deep inelastic eâșp scattering for QÂČ > 200 GeVÂČ with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻Âč. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}âŒȘ, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}âŒȘ at y_{cut} = 10⁻ÂČ for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of QÂČ is found to be consistent with that measured in NC DIS

    Measurement of event shapes in deep inelastic scattering at HERA

    Get PDF
    Inclusive event-shape variables have been measured in the current region of the Breit frame for neutral current deep inelastic ep scattering using an integrated luminosity of 45.0 pb^-1 collected with the ZEUS detector at HERA. The variables studied included thrust, jet broadening and invariant jet mass. The kinematic range covered was 10 < Q^2 < 20,480 GeV^2 and 6.10^-4 < x < 0.6, where Q^2 is the virtuality of the exchanged boson and x is the Bjorken variable. The Q dependence of the shape variables has been used in conjunction with NLO perturbative calculations and the Dokshitzer-Webber non-perturbative corrections (`power corrections') to investigate the validity of this approach.Comment: 7+25 pages, 6 figure
    • 

    corecore