234 research outputs found

    Photorespiration: metabolic pathways and their role in stress protection

    Get PDF
    Photorespiration results from the oxygenase reaction catalysed by ribulose-1,5-bisphosphate carboxylase/ oxygenase. In this reaction glycollate-2-phosphate is produced and subsequently metabolized in the photorespiratory pathway to form the Calvin cycle intermediate glycerate-3-phosphate. During this metabolic process, CO2 and NH3 are produced and ATP and reducing equivalents are consumed, thus making photorespiration a wasteful process. However, precisely because of this ine¤ciency, photorespiration could serve as an energy sink preventing the overreduction of the photosynthetic electron transport chain and photoinhibition, especially under stress conditions that lead to reduced rates of photosynthetic CO2 assimilation. Furthermore, photorespiration provides metabolites for other metabolic processes, e.g. glycine for the synthesis of glutathione, which is also involved in stress protection. In this review, we describe the use of photorespiratory mutants to study the control and regulation of photorespiratory pathways. In addition, we discuss the possible role of photorespiration under stress conditions, such as drought, high salt concentrations and high light intensities encountered by alpine plants

    An evaluation of antipseudomonal dosing on the incidence of treatment failure

    Get PDF
    Introduction: Significant mortality is associated with delays in appropriate antibiotic therapy in Pseudomonas aeruginosa infections. The impact of empiric dosing on clinical outcomes has been largely unreported. Methods: This retrospective cohort compared treatment failure in patients receiving guideline-concordant or guideline-discordant empiric therapy with cefepime, meropenem, or piperacillin/tazobactam. Patients with culture-positive P. aeruginosa between 1 July 2013 and 31 July 2019 were eligible for inclusion. Patients with cystic fibrosis, polymicrobial infection, and urinary or pulmonary colonization were excluded. The composite primary outcome was treatment failure, defined as (1) therapy modification due to resistance/perceived treatment failure, (2) increased/unchanged qSOFA, or (3) persistent fever 48 h after initiating appropriate therapy. Secondary outcomes included rate of infectious diseases consultation, all-cause inpatient mortality, mechanical ventilation requirement, and infection-related intensive care unit and hospital lengths of stay. Results: In total, 198 patients were included: 90 guideline-concordant and 108 guideline-discordant. Baseline characteristics were balanced. Treatment failure was more common in the guideline-discordant than the guideline-concordant group (62% versus 48%; p = 0.04). This remained significant when adjusting for supratherapeutic dosing (p = 0.02). Infectious diseases consultation was higher in the guideline-discordant group (46% versus 29%, p = 0.01), while intensive care unit length of stay was longer in the guideline-concordant group (4.5 versus 3 days, p = 0.03). Additional secondary outcomes were similar. Conclusion: Treatment failure was significantly higher in patients receiving guideline-discordant empiric antipseudomonal dosing. Guideline-directed dosing, disease states, and patient-specific factors should be assessed when considering empiric antipseudomonal dosing

    The Evolution of Cosmic Magnetic Fields: From the Very Early Universe, to Recombination, to the Present

    Full text link
    (abridged) A detailed examination of the evolution of stochastic magnetic fields between high cosmic temperatures and the present epoch is presented. A simple analytical model matching the results of the 3D MHD simulations allows for the prediction of present day magnetic field correlation lengths and energy. Our conclusions are multi fold. (a) Initial primordial fields with only a small amount of helicity are evolving into maximally helical fields. (b) There exists a correlation between the strength of the magnetic field, B, at the peak of it's spectrum and the location of the peak, given at the present epoch by: B ~ 5x10^{-12} (L/kpc) Gauss, where L is the correlation length determined by the initial magnetic field. (c) Concerning studies of generation of cosmic microwave background (CMBR) anisotropies due to primordial magnetic fields of B~10^{-9} Gauss on ~ 10 Mpc scales, such fields are not only impossible to generate in early causal magnetogenesis scenarios but also seemingly ruled out by distortions of the CMBR spectrum due to magnetic field dissipation on smaller scales and the overproduction of cluster magnetic fields. (d) The most promising detection possibility of CMBR distortions due to primordial magnetic fields may be on much smaller scales at higher multipoles l~10^6 where the signal is predicted to be the strongest. (e) It seems possible that magnetic fields in clusters of galaxies are entirely of primordial origin, without invoking dynamo amplification. Such fields would be of (pre-collapse) strength 10^{-12} - 10^{-11} Gauss with correlation lengths in the kpc range, and would also exist in voids of galaxies.Comment: 35 pages, 22 figures, revtex style, submitted to PR

    Geometric Mechanics of Curved Crease Origami

    Full text link
    Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold and the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is corroborated by numerical simulations which allow us to generalize our analysis to study multiply folded structures

    Planar sheets meet negative curvature liquid interfaces

    Full text link
    If an inextensible thin sheet is adhered to a substrate with a negative Gaussian curvature it will experience stress due to geometric frustration. We analyze the consequences of such geometric frustration using analytic arguments and numerical simulations. Both concentric wrinkles and eye-like folds are shown to be compatible with negative curvatures. Which pattern will be realized depends on the curvature of the substrate. We discuss both types of folding patterns and determine the phase diagram governing their appearance.Comment: 5 pages, 4 figure

    Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration

    Get PDF
    Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy

    Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library

    Get PDF
    The present study reports the discovery of a small-molecule negative allosteric modulator for the β2-adrenergic receptor (β2AR) via in vitro affinity-based iterative selection of highly diverse DNA-encoded small-molecule libraries. Characterization of the compound demonstrates its selectivity for the β2AR and that it negatively modulates a wide range of receptor functions. More importantly, our findings establish a generally applicable, proof-of-concept strategy for screening DNA-encoded small-molecule libraries against purified G-protein–coupled receptors (GPCRs), which holds great potential for discovering therapeutic molecules

    The NOX toolbox: validating the role of NADPH oxidases in physiology and disease

    Get PDF
    Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis

    Photorespiratory 2-phosphoglycolate metabolism and photoreduction of O2 cooperate in high-light acclimation of Synechocystis sp. strain PCC 6803

    Get PDF
    In cyanobacteria, photorespiratory 2-phosphoglycolate (2PG) metabolism is mediated by three different routes, including one route involving the glycine decarboxylase complex (Gcv). It has been suggested that, in addition to conversion of 2PG into non-toxic intermediates, this pathway is important for acclimation to high-light. The photoreduction of O2 (Mehler reaction), which is mediated by two flavoproteins Flv1 and Flv3 in cyanobacteria, dissipates excess reductants under high-light by the four electron-reduction of oxygen to water. Single and double mutants defective in these processes were constructed to investigate the relation between photorespiratory 2PG-metabolism and the photoreduction of O2 in the cyanobacterium Synechocystis sp. PCC 6803. The single mutants Δflv1, Δflv3, and ΔgcvT, as well as the double mutant Δflv1/ΔgcvT, were completely segregated but not the double mutant Δflv3/ΔgcvT, suggesting that the T-protein subunit of the Gcv (GcvT) and Flv3 proteins cooperate in an essential process. This assumption is supported by the following results: (1) The mutant Δflv3/ΔgcvT showed a considerable longer lag phase and sometimes bleached after shifts from slow (low light, air CO2) to rapid (standard light, 5% CO2) growing conditions. (2) Photoinhibition experiments indicated a decreased ability of the mutant Δflv3/ΔgcvT to cope with high-light. (3) Fluorescence measurements showed that the photosynthetic electron chain is reduced in this mutant. Our data suggest that the photorespiratory 2PG-metabolism and the photoreduction of O2, particularly that catalyzed by Flv3, cooperate during acclimation to high-light stress in cyanobacteria

    Identification and characterization of a plastid-localized Arabidopsis glyoxylate reductase isoform: comparison with a cytosolic isoform and implications for cellular redox homeostasis and aldehyde detoxification

    Get PDF
    Enzymes that reduce the aldehyde chemical grouping (i.e. H-C=O) to its corresponding alcohol could be crucial in maintaining plant health. Recently, recombinant expression of a cytosolic enzyme from Arabidopsis thaliana (L.) Heynh (designated as glyoxylate reductase 1 or AtGR1) revealed that it effectively catalyses the in vitro reduction of both glyoxylate and succinic semialdehyde (SSA). In this paper, web-based bioinformatics tools revealed a second putative GR cDNA (GenBank Accession No. AAP42747; designated herein as AtGR2) that is 57% identical on an amino acid basis to GR1. Sequence encoding a putative targeting signal (N-terminal 43 amino acids) was deleted from the full-length GR2 cDNA and the resulting truncated gene was co-expressed with the molecular chaperones GroES/EL in Escherichia coli, enabling production and purification of soluble recombinant protein. Kinetic analysis revealed that recombinant GR2 catalysed the conversion of glyoxylate to glycolate (Km glyoxylate=34 μM), and SSA to γ-hydroxybutyrate (Km SSA=8.96 mM) via an essentially irreversible, NADPH-based mechanism. GR2 had a 350-fold higher preference for glyoxylate than SSA, based on the performance constants (kcat/Km). Fluorescence microscopic analysis of tobacco (Nicotiana tabacum L.) suspension cells transiently transformed with GR1 linked to the green fluorescent protein (GFP) revealed that GR1 was localized to the cytosol, whereas GR2-GFP was localized to plastids via targeting information contained within its N-terminal 45 amino acids. The identification and characterization of distinct plastidial and cytosolic glyoxylate reductase isoforms is discussed with respect to aldehyde detoxification and the plant stress response
    corecore