4,718 research outputs found
Reports Of Conferences, Institutes, And Seminars
This quarter\u27s column offers coverage of multiple sessions from the 2016 Electronic Resources & Libraries (ER&L) Conference, held April 3–6, 2016, in Austin, Texas. Topics in serials acquisitions dominate the column, including reports on altmetrics, cost per use, demand-driven acquisitions, and scholarly communications and the use of subscriptions agents; ERMS, access, and knowledgebases are also featured
Technik-Utopisches bei Moholy-Nagy
Wissenschaftliches Kolloquium vom 27. bis 30. Juni 1996 in Weimar an der Bauhaus-Universität zum Thema: ‚Techno-Fiction. Zur Kritik der technologischen Utopien
Pflanzliche Makro- und Mikroreste in ausgewählten Proben von der Grabung Torwiesen II sowie deren mikromorphologische Auswertung
Patch-Scale Movement Dynamics in the Iowa Grassland Butterflies \u3ci\u3eSpeyeria Cybele\u3c/i\u3e and \u3ci\u3eMegisto Cymela\u3c/i\u3e (Lepidoptera: Nymphalidae)
An understanding of the movement dynamics of invertebrates can be critical to their conservation, especially when managing relatively small, isolated habitats. Most studies of butterfly movement have focused on metapopulation dynamics at relatively large spatial scales, and the results from these studies may not translate well for patchy populations within a single nature preserve. In this work we use individual mark and recapture (IMR) methods to follow the movements of two species of butterfly, Megisto cymela (Cramer) and Speyeria cybele F. (Lepidoptera: Nymphalidae) within a 240 hectare forest and grassland preserve in central Iowa, USA. Significant redistribution was seen in both species, with 55.7% of S. cybele and 31.1% of M. cymela undergoing interpatch movement. Median movement rates during the study were 105 m/day for S. cybele and 38 m/day for M. cymela, with the top decile moving at a rate of over five times these values. This movement did not appear to be random. S. cybele exhibited directed movement towards patches with high nectaring potential, although not all such patches were selected. M. cymela aggregated in particular prairie patches, especially those with high edge to area ratios, although the reason for aggregation is not clear
Sound understanding of environmental, health and safety, clinical, and market aspects is imperative to clinical translation of nanomedicines
Zeno Dynamics of von Neumann Algebras
The dynamical quantum Zeno effect is studied in the context of von Neumann
algebras. We identify a localized subalgebra on which the Zeno dynamics acts by
automorphisms. The Zeno dynamics coincides with the modular dynamics of that
subalgebra, if an additional assumption is satisfied. This relates the modular
operator of that subalgebra to the modular operator of the original algebra by
a variant of the Kato-Lie-Trotter product formula.Comment: Revised version; further typos corrected; 9 pages, AMSLaTe
Polyspecific, antiviral immune response distinguishes multiple sclerosis and neuromyelitis optica
Background: A polyspecific, intrathecal humoral immune response against neurotropic viruses such as measles, rubella and varicella zoster virus (MRZ reaction, MRZR) is present in 80--100% of patients with multiple sclerosis (MS), but has not to date been evaluated in patients with neuromyelitis optica (NMO).Aims: To evaluate whether MRZR distinguishes NMO and MS.Methods: 20 patients with NMO and 42 with MS were included. The intrathecal synthesis of antibodies against measles, rubella and varicella zoster virus was detected by calculation of the respective antibody indices (AI).Results: A positive MRZ reaction, as defined by a combination of at least two positive AIs, was found in 37/42 MS, but in only 1/20 NMO patients (p<0.0001). Median AI values differed significantly between the groups (p<0.0005).Conclusions: The polyspecific antiviral humoral immune response characteristic for MS is widely missing in NMO, irrespective of the NMO-IgG status of the patients. Our findings further strengthen the case for NMO being pathologically distinct from MS
APO010, a synthetic hexameric CD95 ligand, induces human glioma cell death in vitro and in vivo
Death receptor targeting has emerged as one of the promising novel approaches of cancer therapy. The activation of one such prototypic death receptor, CD95 (Fas/APO-1), has remained controversial because CD95 agonistic molecules have exhibited either too strong toxicity or too little activity. The natural CD95 ligand (CD95L) is a cytokine, which needs to trimerize to mediate a cell death signal. Mega-Fas-Ligand, now referred to as APO010, is a synthetic hexameric CD95 agonist that exhibits strong antitumor activity in various tumor models. Here, we studied the effects of APO010 in human glioma models in vitro and in vivo. Compared with a cross-linked soluble CD95L or a CD95-agonistic antibody, APO010 exhibited superior activity in glioma cell lines expressing CD95 and triggered caspase-dependent cell death. APO010 reduced glioma cell viability in synergy when combined with temozolomide. The locoregional administration of APO010 induced glioma cell death in vivo and prolonged the survival of tumor-bearing mice. A further exploration of APO010 as a novel antiglioma agent is warranted
Flow equations for Hamiltonians: Contrasting different approaches by using a numerically solvable model
To contrast different generators for flow equations for Hamiltonians and to
discuss the dependence of physical quantities on unitarily equivalent, but
effectively different initial Hamiltonians, a numerically solvable model is
considered which is structurally similar to impurity models. By this we discuss
the question of optimization for the first time. A general truncation scheme is
established that produces good results for the Hamiltonian flow as well as for
the operator flow. Nevertheless, it is also pointed out that a systematic and
feasible scheme for the operator flow on the operator level is missing. For
this, an explicit analysis of the operator flow is given for the first time. We
observe that truncation of the series of the observable flow after the linear
or bilinear terms does not yield satisfactory results for the entire parameter
regime as - especially close to resonances - even high orders of the exact
series expansion carry considerable weight.Comment: 25 pages, 10 figure
Solitosynthesis of Q-balls
We study the formation of Q-balls in the early universe, concentrating on
potentials with a cubic or quartic attractive interaction. Large Q-balls can
form via solitosynthesis, a process of gradual charge accretion, provided some
primordial charge assymetry and initial ``seed'' Q-balls exist. We find that
such seeds are possible in theories in which the attractive interaction is of
the form , with a light ``Higgs'' mass. Condensate formation
and fragmentation is only possible for masses in the sub-eV range;
these Q-balls may survive untill present.Comment: 9 pages, 1 figur
- …
