To contrast different generators for flow equations for Hamiltonians and to
discuss the dependence of physical quantities on unitarily equivalent, but
effectively different initial Hamiltonians, a numerically solvable model is
considered which is structurally similar to impurity models. By this we discuss
the question of optimization for the first time. A general truncation scheme is
established that produces good results for the Hamiltonian flow as well as for
the operator flow. Nevertheless, it is also pointed out that a systematic and
feasible scheme for the operator flow on the operator level is missing. For
this, an explicit analysis of the operator flow is given for the first time. We
observe that truncation of the series of the observable flow after the linear
or bilinear terms does not yield satisfactory results for the entire parameter
regime as - especially close to resonances - even high orders of the exact
series expansion carry considerable weight.Comment: 25 pages, 10 figure