154 research outputs found

    Pairbreaking Without Magnetic Impurities in Disordered Superconductors

    Get PDF
    We study analytically the effects of inhomogeneous pairing interactions in short coherence length superconductors, using a spatially varying Bogoliubov-deGennes model. Within the Born approximation, it reproduces all of the standard Abrikosov-Gor'kov pairbreaking and gaplessness effects, even in the absence of actual magnetic impurities. For pairing disorder on a single site, the T-matrix gives rise to bound states within the BCS gap. Our results are compared with recent scanning tunneling microscopy measurements on Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} with Zn or Ni impurities.Comment: 4 pages, 2 figures, submitted to PR

    Spin-Spin Asymmetries in Large Transverse Momentum Higgs Boson Production

    Full text link
    We examine the spin-dependence of standard model Higgs boson production at large transverse momentum via the processes gg→gH0gg \rightarrow gH^0, qg→qH0qg \rightarrow qH^0, and qq‾→gH0q\overline{q} \rightarrow gH^0. The partonic level spin-spin asymmetries (a^LL\hat{a}_{LL}) for these processes are large at SSC/LHC energies.Comment: 10 pages, 4 figures (not included), LaTeX; PSU/TH/113, MAD/PH/70

    Expression signatures of TP53 mutations in serous ovarian cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the <it>TP53 </it>gene are extremely common and occur very early in the progression of serous ovarian cancers. Gene expression patterns that relate to mutational status may provide insight into the etiology and biology of the disease.</p> <p>Methods</p> <p>The <it>TP53 </it>coding region was sequenced in 89 frozen serous ovarian cancers, 40 early stage (I/II) and 49 advanced stage (III/IV). Affymetrix U133A expression data was used to define gene expression patterns by mutation, type of mutation, and cancer stage.</p> <p>Results</p> <p>Missense or chain terminating (null) mutations in <it>TP53 </it>were found in 59/89 (66%) ovarian cancers. Early stage cancers had a significantly higher rate of null mutations than late stage disease (38% vs. 8%, p < 0.03). In advanced stage cases, mutations were more prevalent in short term survivors than long term survivors (81% vs. 30%, p = 0.0004). Gene expression patterns had a robust ability to predict <it>TP53 </it>status within training data. By using early versus late stage disease for out of sample predictions, the signature derived from early stage cancers could accurately (86%) predict mutation status of late stage cancers.</p> <p>Conclusions</p> <p>This represents the first attempt to define a genomic signature of <it>TP53 </it>mutation in ovarian cancer. Patterns of gene expression characteristic of <it>TP53 </it>mutation could be discerned and included several genes that are known p53 targets or have been described in the context of expression signatures of <it>TP53 </it>mutation in breast cancer.</p

    Phylogeography of the tropical planktonic foraminifera lineage Globigerinella reveals isolation inconsistent with passive dispersal by ocean currents

    Get PDF
    Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates

    Reproduction of a marine planktonic protist: Individual success versus population survival

    No full text
    Understanding the biology of reproduction is important for retracing key evolutionary processes in organisms, yet gaining detailed insights often poses major challenges. Planktonic Foraminifera are globally distributed marine microbial eukaryotes and important contributors to the global carbon cycle. Their extant biodiversity shows restricted distribution patterns of some species, whereas others are cosmopolitan in the world ocean. Planktonic Foraminifera cannot be bred under laboratory conditions, and thus details of their life cycle remain incomplete. Solely the production of flagellated gametes has been observed and taken as an indication for an exclusively sexual reproduction. Yet, sexual reproduction by spawning of gametes in the open ocean relies on sufficient gamete encounters to maintain viable populations, which represents a problem for organisms that lack the means of active propulsion and are marked by low population densities. To increase knowledge on the reproductive biology of planktonic Foraminifera, we applied a dynamic, individual-based modelling approach with parameters based on laboratory and field observations to test if random gamete encounters under commonly observed population densities are sufficient for maintaining viable populations. We show that temporal synchronization and potentially spatial concentration of gamete release seems inevitable for maintenance of the population. We argue that planktonic Foraminifera optimized their individual reproductive success at the expense of community-wide gene flow, which may explain their high degree of diversity. Our modelling approach helps to illuminate foraminiferal population dynamics and to predict the existence of necessary reproduction strategies, which may be detected in future field experiments. This study therefore contributes to our understanding of plankton ecology and evolution and their reproductive strategies in the open ocean
    • …
    corecore