3,482 research outputs found

    A holistic approach to enhance the use of neglected and underutilized species: the case of Andean grains in Bolivia and Peru

    Get PDF
    The IFAD-NUS project, implemented over the course of a decade in two phases, represents the first UN-supported global effort on neglected and underutilized species (NUS). This initiative, deployed and tested a holistic and innovative value chain framework using multi-stakeholder, participatory, inter-disciplinary, pro-poor gender- and nutrition-sensitive approaches. The project has been linking aspects often dealt with separately by R&D, such as genetic diversity, selection, cultivation, harvest, value addition, marketing, and final use, with the goal to contribute to conservation, better incomes, and improved nutrition and strengthened livelihood resilience. The project contributed to the greater conservation of Andean grains and their associated indigenous knowledge, through promoting wider use of their diversity by value chain actors, adoption of best cultivation practices, development of improved varieties, dissemination of high quality seed, and capacity development. Reduced drudgery in harvest and postharvest operations, and increased food safety were achieved through technological innovations. Development of innovative food products and inclusion of Andean grains in school meal programs is projected to have had a positive nutrition outcome for targeted communities. Increased income was recorded for all value chain actors, along with strengthened networking skills and self-reliance in marketing. The holistic approach taken in this study is advocated as an effective strategy to enhance the use of other neglected and underutilized species for conservation and livelihood benefits

    HESS J1507-622: an unique unidentified source off the Galactic Plane

    Full text link
    Galactic very high energy (VHE, > 100 GeV) gamma ray sources in the inner Galaxy H.E.S.S. survey tend to cluster within 1 degree in latitude around the Galactic plane. HESS J1507-622 instead is unique, since it is located at latitude of ~3.5 degrees. HESS J1507-622 is slightly extended over the PSF of the instrument and hence its Galactic origin is clear. The search for counterparts in other wavelength regimes (radio, infrared and X-rays) failed to show any plausible counterparts; and given its position off the Galactic plane and hence the absorption almost one order of magnitude lower, it is very surprising to not see any counterparts especially at X-rays wavelengths (by ROSAT, XMM Newton and Chandra). Its latitude implies that it is either rather close, within about 1 kpc, or is located well off the Galactic plane. And also the models reflect the uniqueness of this object: a leptonic PWN scenario would place this source due to its quite small extension to multi-kpc distance whereas a hadronic scenario would preferentially locate this object at distances of < 1 kpc where the density of target material is higher

    New unidentified H.E.S.S. Galactic sources

    Full text link
    H.E.S.S. is one of the most sensitive instruments in the very high energy (VHE; > 100 GeV) gamma-ray domain and has revealed many new sources along the Galactic Plane. After the successful first VHE Galactic Plane Survey of 2004, H.E.S.S. has continued and extended that survey in 2005-2008, discovering a number of new sources, many of which are unidentified. Some of the unidentified H.E.S.S. sources have several positional counterparts and hence several different possible scenarios for the origin of the VHE gamma-ray emission; their identification remains unclear. Others have so far no counterparts at any other wavelength. Particularly, the lack of an X-ray counterpart puts serious constraints on emission models. Several newly discovered and still unidentified VHE sources are reported here.Comment: ICRC 2009 proceeding

    Weak Quasi-elastic Production of Hyperons

    Get PDF
    The quasielastic weak production of Λ\Lambda and Σ\Sigma hyperons from nucleons and nuclei induced by antineutrinos is studied in the energy region of some ongoing neutrino oscillation experiments in the intermediate energy region. The hyperon nucleon transition form factors determined from neutrino nucleon scattering and an analysis of high precision data on semileptonic decays of neutron and hyperons using SU(3) symmetry have been used. The nuclear effects due to Fermi motion and final state interaction effects due to hyperon nucleon scattering have also been studied. The numerical results for differential and total cross sections have been presented.Comment: 26 pages, 10 figure

    Collisionless Damping of Fast MHD Waves in Magneto-rotational Winds

    Full text link
    We propose collisionless damping of fast MHD waves as an important mechanism for the heating and acceleration of winds from rotating stars. Stellar rotation causes magnetic field lines anchored at the surface to form a spiral pattern and magneto-rotational winds can be driven. If the structure is a magnetically dominated, fast MHD waves generated at the surface can propagate almost radially outward and cross the field lines. The propagating waves undergo collisionless damping owing to interactions with particles surfing on magnetic mirrors that are formed by the waves themselves. The damping is especially effective where the angle between the wave propagation and the field lines becomes moderately large (∼20\sim 20 to 80∘80^{\circ}). The angle tends naturally to increase into this range because the field in magneto-rotational winds develops an increasingly large azimuthal component. The dissipation of the wave energy produces heating and acceleration of the outflow. We show using specified wind structures that this damping process can be important in both solar-type stars and massive stars that have moderately large rotation rates. This mechanism can play a role in coronae of young solar-type stars which are rapidly rotating and show X-ray luminosities much larger than the sun. The mechanism could also be important for producing the extended X-ray emitting regions inferred to exist in massive stars of spectral type middle B and later.Comment: 12 pages, including 7 figures, accepted for publication in Ap
    • …
    corecore