392 research outputs found

    MARCH WET AVALANCHE PREDICTION AT BRIDGER BOWL SKI AREA, MONTANA

    Get PDF
    ABSTRACT: Few avalanche forecast models are tailored specifically for wet avalanche forecasting. Bridger Bowl (intermountain climate) is a good area to develop a wet avalanche probability model. The primary archived data consists of eight variables. The archived data for March from 1968 to 2001 (1996 data unavailable) were used to develop 68 predictor variables related to temperature, snowpack settlement, and precipitation. The original dataset was divided into days with snowfall in the past 48 hours (new snow) and days without (old snow). There were 33 significant old snow variables and 22 significant new snow variables. Six variables are common to both old and new snow. The best predictor variables for old and new snow are different. The variables were analyzed with binomial logistic regression to produce probability models for old snow and for new snow wet avalanche conditions. The old snow model uses the prediction day minimum temperature and the two-day change in total snow depth as predictor variables and has a 89% overall success rate. However, the majority of this success is due to correct prediction of days without wet avalanches (96% of all correct predictions). The new snow model uses the prediction day minimum temperature and three-day cumulative new snow water equivalent as predictor variables, but is less useful. The models are applicable only to Bridger Bowl. The numerical forecast models can be used as one of the tools in the forecasting toolbox but limited data and complexity of process require that the decisions about closure remain in the hands of the ski patrol

    MARCH WET AVALANCHE PREDICTION AT BRIDGER BOWL SKI AREA, MONTANA

    Get PDF
    ABSTRACT: Few avalanche forecast models are tailored specifically for wet avalanche forecasting. Bridger Bowl (intermountain climate) is a good area to develop a wet avalanche probability model. The primary archived data consists of eight variables. The archived data for March from 1968 to 2001 (1996 data unavailable) were used to develop 68 predictor variables related to temperature, snowpack settlement, and precipitation. The original dataset was divided into days with snowfall in the past 48 hours (new snow) and days without (old snow). There were 33 significant old snow variables and 22 significant new snow variables. Six variables are common to both old and new snow. The best predictor variables for old and new snow are different. The variables were analyzed with binomial logistic regression to produce probability models for old snow and for new snow wet avalanche conditions. The old snow model uses the prediction day minimum temperature and the two-day change in total snow depth as predictor variables and has a 89% overall success rate. However, the majority of this success is due to correct prediction of days without wet avalanches (96% of all correct predictions). The new snow model uses the prediction day minimum temperature and three-day cumulative new snow water equivalent as predictor variables, but is less useful. The models are applicable only to Bridger Bowl. The numerical forecast models can be used as one of the tools in the forecasting toolbox but limited data and complexity of process require that the decisions about closure remain in the hands of the ski patrol

    Hydrography and circulation in the Filchner Depression, Weddell Sea, Antarctica

    Get PDF
    Cold and dense ice shelf water (ISW) emerging from the Filchner-Ronne Ice Shelf cavity in the southwestern Weddell Sea flows northward through the Filchner Depression to eventually descend the con- tinental slope and contribute to the formation of bottom water. New ship-born observations of hydrogra- phy and currents from Filchner Depression in January 2013 suggest that the northward flow of ISW takes place in a middepth jet along the eastern flank of the depression, thus questioning the traditional view with outflow along the western flank. This interpretation of the data is supported by results from a regional numerical model, which shows that ISW flowing northward along the eastern coast of Berkner Island turns eastward and crosses the depression to its eastern side upon reaching the Filchner ice front. The ice front represents a sudden change in the thickness of the water column and thus a potential vorticity barrier. Transport estimates of northward ISW flux based on observations ranges from 0.2 to 1.0 Sv.publishedVersio

    Modeling of crack propagation in weak snowpack layers using the discrete element method

    Get PDF
    Dry-snow slab avalanches are generally caused by a sequence of fracture processes including (1) failure initiation in a weak snow layer underlying a cohesive slab, (2) crack propagation within the weak layer and (3) tensile fracture through the slab which leads to its detachment. During the past decades, theoretical and experimental work has gradually led to a better understanding of the fracture process in snow involving the collapse of the structure in the weak layer during fracture. This now allows us to better model failure initiation and the onset of crack propagation, i.e., to estimate the critical length required for crack propagation. On the other hand, our understanding of dynamic crack propagation and fracture arrest propensity is still very limited. To shed more light on this issue, we performed numerical propagation saw test (PST) experiments applying the discrete element (DE) method and compared the numerical results with field measurements based on particle tracking. The goal is to investigate the influence of weak layer failure and the mechanical properties of the slab on crack propagation and fracture arrest propensity. Crack propagation speeds and distances before fracture arrest were derived from the DE simulations for different snowpack configurations and mechanical properties. Then, in order to compare the numerical and experimental results, the slab mechanical properties (Young's modulus and strength) which are not measured in the field were derived from density. The simulations nicely reproduced the process of crack propagation observed in field PSTs. Finally, the mechanical processes at play were analyzed in depth which led to suggestions for minimum column length in field PSTs

    Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain

    Get PDF
    Dynamic natural processes govern snow distribution in mountainous environments throughout the world. Interactions between these different processes create spatially variable patterns of snow depth across a landscape. Variations in accumulation and redistribution occur at a variety of spatial scales, which are well established for moderate mountain terrain. However, spatial patterns of snow depth variability in steep, complex mountain terrain have not been fully explored due to insufficient spatial resolutions of snow depth measurement. Recent advances in uncrewed aerial systems (UASs) and structure from motion (SfM) photogrammetry provide an opportunity to map spatially continuous snow depths at high resolutions in these environments. Using UASs and SfM photogrammetry, we produced 11 snow depth maps at a steep couloir site in the Bridger Range of Montana, USA, during the 2019–2020 winter. We quantified the spatial scales of snow depth variability in this complex mountain terrain at a variety of resolutions over 2 orders of magnitude (0.02 to 20 m) and time steps (4 to 58 d) using variogram analysis in a high-performance computing environment. We found that spatial resolutions greater than 0.5 m do not capture the complete patterns of snow depth spatial variability within complex mountain terrain and that snow depths are autocorrelated within horizontal distances of 15 m at our study site. The results of this research have the potential to reduce uncertainty currently associated with snowpack and snow water resource analysis by documenting and quantifying snow depth variability and snowpack evolution on relatively inaccessible slopes in complex terrain at high spatial and temporal resolutions.</p

    Haemoglobin mass and running time trial performance after recombinant human erythropoietin administration in trained men

    Get PDF
    &lt;p&gt;Recombinant human erythropoietin (rHuEpo) increases haemoglobin mass (Hbmass) and maximal oxygen uptake (v˙ O2 max).&lt;/p&gt; &lt;p&gt;Purpose: This study defined the time course of changes in Hbmass, v˙ O2 max as well as running time trial performance following 4 weeks of rHuEpo administration to determine whether the laboratory observations would translate into actual improvements in running performance in the field.&lt;/p&gt; &lt;p&gt;Methods: 19 trained men received rHuEpo injections of 50 IUNkg21 body mass every two days for 4 weeks. Hbmass was determined weekly using the optimized carbon monoxide rebreathing method until 4 weeks after administration. v˙ O2 max and 3,000 m time trial performance were measured pre, post administration and at the end of the study.&lt;/p&gt; &lt;p&gt;Results: Relative to baseline, running performance significantly improved by ,6% after administration (10:3061:07 min:sec vs. 11:0861:15 min:sec, p,0.001) and remained significantly enhanced by ,3% 4 weeks after administration (10:4661:13 min:sec, p,0.001), while v˙ O2 max was also significantly increased post administration (60.765.8 mLNmin21Nkg21 vs. 56.066.2 mLNmin21Nkg21, p,0.001) and remained significantly increased 4 weeks after rHuEpo (58.065.6 mLNmin21Nkg21, p = 0.021). Hbmass was significantly increased at the end of administration compared to baseline (15.261.5 gNkg21 vs. 12.761.2 gNkg21, p,0.001). The rate of decrease in Hbmass toward baseline values post rHuEpo was similar to that of the increase during administration (20.53 gNkg21Nwk21, 95% confidence interval (CI) (20.68, 20.38) vs. 0.54 gNkg21Nwk21, CI (0.46, 0.63)) but Hbmass was still significantly elevated 4 weeks after administration compared to baseline (13.761.1 gNkg21, p&#60;0.001).&lt;/p&gt; &lt;p&gt;Conclusion: Running performance was improved following 4 weeks of rHuEpo and remained elevated 4 weeks after administration compared to baseline. These field performance effects coincided with rHuEpo-induced elevated v˙ O2 max and Hbmass.&lt;/p&gt

    Ejection Time-Corrected Systolic Velocity Improves Accuracy in the Evaluation of Myocardial Dysfunction: A Study in Piglets

    Get PDF
    This study aimed to assess the effect of correcting for the impact of heart rate (HR) or ejection time (ET) on myocardial velocities in the long axis in piglets undergoing hypoxia. The ability to eject a higher volume at a fixed ET is a characteristic of contractility in the heart. Systolic velocity of the atrioventricular annulus displacement is directly related to volume changes of the ventricle. Both ET and systolic velocity may be measured in a single heartbeat. In 29 neonatal pigs, systolic velocity and ET were measured with tissue Doppler techniques in the mitral valve annulus, the tricuspid valve annulus, and the septum. All ejection time corrected velocities (S(ET), mean ± SEM, cm/s) decreased significantly during hypoxia (Smva(ET) 15.5 ± 0.2 to 13.2 ± 0.3 (p < 0.001), Sseptal(ET) 9.9 ± 0.1 to 7.8 ± 0.2 (p < 0.001), Stva(ET) 12.1 ± 0.2 to 9.8 ± 0.3 (p < 0.001)). The magnitude of change from baseline to hypoxia was greater for ejection time corrected systolic velocities than for RR-interval corrected velocities (mean ± SEM, cm/s); ΔSmva(ET) 2.3 ± 2.0 vs. ΔSmva(RR) 1.6 ± 1.1 (p = 0.02), ΔSseptal(ET) 2.1 ± 1.0 vs. ΔSseptal(RR) 1.6 ± 1.0 (p < 0.01), ΔStva(ET) 2.3 ± 1.1 vs. ΔStva(RR) 1.8 ± 1.3 (p = 0.04). The receiver operator characteristic (ROC) showed superior performance of S(ET) compared with uncorrected velocities. The decrease in S(ET) during hypoxia was not influenced by important hemodynamic determinants. ET-corrected systolic velocity improves accuracy and decreases variability in the evaluation of systolic longitudinal function and contractility during global hypoxia in neonatal pigs compared with systolic velocity alone. It is robust toward hemodynamic changes. This novel method has the potential of becoming a useful tool in clinical practice

    Murein and pseudomurein cell wall binding domains of bacteria and archaea—a comparative view

    Get PDF
    The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and acts as an adhesion platform for bacteriophages. The walls of bacteria and archaea are mostly composed of murein and pseudomurein, respectively. Cell wall binding domains play a crucial role in the non-covalent attachment of proteins to cell walls. Here, we give an overview of the similarities and differences in the biochemical and functional properties of the two major murein and pseudomurein cell wall binding domains, i.e., the Lysin Motif (LysM) domain (Pfam PF01476) and the pseudomurein binding (PMB) domain (Pfam PF09373) of bacteria and archaea, respectively

    Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice

    Get PDF
    Background: Sodium glucose co-transporter2 inhibitors reduce the incidence of cardiovascular events in patients with type 2 diabetes mellitus based on the results of recent cardiovascular outcome studies. Herein, we investigated the efects of long-term treatment with canaglifozin on biochemical and immunohistochemical markers related to atherosclerosis and atherosclerosis development in the aorta of apolipoprotein E knockout (Apo-E(−/−) ) mice. Methods: At the age of 5 weeks, mice were switched from normal to a high-fat diet. After 5 weeks, Apo-E(−/−) mice were divided into control-group (6 mice) treated with 0.5% hydroxypropyl methylcellulose and Cana-group (7 mice) treated with canaglifozin (10 mg/kg per day) per os. After 5 weeks of intervention, animals were sacrifced, and heart and aorta were removed. Sections stained with hematoxylin–eosin (H&E) were used for histomorphometry whereas Masson’s stained tissues were used to quantify the collagen content. Immunohistochemistry to assess MCP-1, CD68, a-smooth muscle actin, MMP-2, MMP-9, TIMP-1 and TIMP-2 expression was carried out and q-PCR experiments were performed to quantify mRNA expression. Results: Canaglifozin-group mice had lower total-cholesterol, triglycerides and glucose levels (P<0.01), while heart rate was signifcantly lower (P<0.05). Histomorphometry revealed that one in seven Cana-group mice versus four in six control mice developed atheromatosis, while aortic root plaque was signifcantly less, and collagen was 1.6 times more intense in canaglifozin-group suggesting increased plaque stability. Immunohistochemistry revealed that MCP-1 was signifcantly less expressed (P<0.05) in the aortic root of canaglifozin-group while reduced expression of a-actin and CD68 was not reaching signifcance (P=0.15). VCAM-1 and MCP-1 mRNA levels were lower (P=0.02 and P=0.07, respectively), while TIMP-1/MMP-2 ratio expression was higher in canaglifozin-group approaching statistical signifcance (P=0.07). Conclusions: Canaglifozin attenuates the progression of atherosclerosis, reducing (1) hyperlipidemia and hyper‑ glycemia, and (2) infammatory process, by lowering the expression of infammatory molecules such as MCP-1 and VCAM-1. Moreover, canaglifozin was found to increase the atherosclerotic plaque stability via increasing TIMP-1/ MMP-2 ratio expression

    Reduction of Natural Killer but Not Effector CD8 T Lymphoyctes in Three Consecutive Cases of Severe/Lethal H1N1/09 Influenza A Virus Infection

    Get PDF
    Background: The cause of severe disease in some patients infected with pandemic influenza A virus is unclear. Methodology/Principal Findings: We present the cellular immunology profile in the blood, and detailed clinical (and postmortem) findings of three patients with rapidly progressive infection, including a pregnant patient who died. The striking finding is of reduction in natural killer (NK) cells but preservation of activated effector CD8 T lymphocytes; with viraemia in the patient who had no NK cells. Comparison with control groups suggests that the reduction of NK cells is unique to these severely ill patients. Conclusion/Significance: Our report shows markedly reduced NK cells in the three patients that we sampled and raises the hypothesis that NK may have a more significant role than T lymphocytes in controlling viral burden when the host is confronted with a new influenza A virus subtype
    corecore