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ABSTRACT:  Few avalanche forecast models are tailored specifically for wet avalanche forecasting.  
Bridger Bowl (intermountain climate) is a good area to develop a wet avalanche probability model.   The 
primary archived data consists of eight variables.  The archived data for March from 1968 to 2001 (1996 
data unavailable) were used to develop 68 predictor variables related to temperature, snowpack 
settlement, and precipitation.  The original dataset was divided into days with snowfall in the past 48 
hours (new snow) and days without (old snow).  There were 33 significant old snow variables and 22 
significant new snow variables.  Six variables are common to both old and new snow.  The best predictor 
variables for old and new snow are different. The variables were analyzed with binomial logistic 
regression to produce probability models for old snow and for new snow wet avalanche conditions.  The 
old snow model uses the prediction day minimum temperature and the two-day change in total snow 
depth as predictor variables and has a 89% overall success rate.  However, the majority of this success is 
due to correct prediction of days without wet avalanches (96% of all correct predictions).  The new snow 
model uses the prediction day minimum temperature and three-day cumulative new snow water 
equivalent as predictor variables, but is less useful.  The models are applicable only to Bridger Bowl.  The 
numerical forecast models can be used as one of the tools in the forecasting toolbox but limited data and 
complexity of process require that the decisions about closure remain in the hands of the ski patrol. 
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1. INTRODUCTION 
 

As spring approaches, wet snow avalanches 
become a hazard for ski areas in all snow climates 
(maritime, intermountain and continental).  Ski 
patrols must take measures to reduce skier 
exposure to wet avalanche danger.  Wet 
avalanche conditions are particularly problematic 
because they are difficult to control artificially with 
explosives.  The physical properties of wet snow  
suppress the propagation of a shock wave which 
is essential for release (Armstrong and Fues, 
1976).  Bridger Bowl Ski Area in Southwest 
Montana (Fig. 1) is concerned about wet snow 
avalanches because a majority of natural or skier-
triggered wet slides start in expert terrain and can 
run out onto heavily used intermediate and 
beginner ski slopes below.   Bridger wants to know 
when the expert terrain on the upper mountain 
should be closed to protect the skiers below from 
skier-triggered wet avalanches.  The patrol faces 
the difficult task of identifying times when ski 
slopes transition from a stable wet snow situation 
to a dangerous one. One approach to the problem 
is the use of models as tools to assist patrollers 
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in their efforts to forecast unstable conditions. 

A variety of approaches have been used to 
forecast instability over the years.  They include 
univariate analysis (Perla, 1970, Judson and 
Erickson, 1973) and multivariate techniques  such 
as discriminate analysis (Bovis, 1977),  forward 
and backward step-wise discriminate analysis, 
principal component analysis, dynamic clustered 
analysis and linear and quadratic discrimination 

Figure 1.  Bridger Bowl is 15 km northeast of 
Bozeman, southwest Montana, USA 
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(Fohn et al., 1977),   classification and regression 
tree (CART) analysis (Davis et al., 1999),  and 
nearest neighbor analysis (Merindol et al., 2002).  
Three (Bovis, 1977; Fohn et al., 1977; and Judson 
and King, 1985) considered wet avalanches when 
developing their models.  Bovis (1977) was the 
only analysis which designed prediction models 
specifically for wet avalanches, but the model was 
developed for a highway corridor in a continental 
climate.  Bridger Bowl is a ski area in an 
intermountain snow climate, a climate that has not 
yet been modeled for wet snow avalanches. 

The Bridger-Bowl dataset also provides an 
opportunity to examine whether there is a 
difference between wet avalanches on days with 
snowfall in the past 48 hours (new snow) and days 
without (old snow).  This difference is potentially 
important because instabilities in new snow may 
be influenced more by early warming or solar 
radiation events, while old snow may require more 
prolonged warming or solar radiation before 
instabilities develop.  The difference between old 
and new wet snow avalanche has not been 
studied before. 

The work consists of a hypothesis testing 
phase and the model development phase which 
examines the probability of wet avalanche 
occurrence at Bridger Bowl.  This paper focuses 
on the model development phase.  The details of 
both phases can be found in Romig (2004).   

  
2. METHODS 
 

The 1968 to 1995 meteorological and 
avalanche records reported by Bridger Bowl were 
downloaded from the West Wide Avalanche 
Network (WWAN, 2002).  The 1997 to 2001 
records were obtained from the Bridger Bowl 
archives (1996 data were missing).  Thirty-two 
years of data were examined.   Meteorological and 
snowpack data have been recorded from 1968 to 
present by the Bridger Bowl Ski Patrol each 
morning during the ski season at the Alpine 
weather station on the north side of the Bridger 
Bowl Ski Area at an elevation of 2260m (Fig. 1) 
(Mock and Birkeland, 2000).  The station has not 
been moved since 1968.  Instruments include an 8 
inch (20 cm) orifice paper-recording, weighing 
precipitation gage (cone out), maximum-minimum 
mercury thermometer, snow board, and snow 
stake.  The site is in a small opening in evergreen 
trees just north of the Alpine run.    

Primary weather and snowpack data include 
24 hour maximum air temperature, 24 hour 
minimum air temperature, total snowpack depth, 
24 hour new snow depth, 24 hour new snow water 

equivalent, 24 hour rain totals, and day of year (1 
January = 0).  Air temperature data are recorded 
to the nearest 1°F (0.6°C), snow depth 
measurements are recorded to the nearest 1.0 
inch (25 mm), and snow-water-equivalent 
measurements are recorded to the nearest 0.01 
inch (0.25 mm).Temperatures were converted to 
Celsius.  Visual inspection of the data showed 
three recordation errors identifiable because of 
inconsistencies between three adjacent days.  
These three days were removed from the dataset.   

Avalanche data were reported with the U.S. 
avalanche classification, which includes avalanche 
type (dry slab, dry loose, wet slab and wet loose), 
cause of release (artificial or natural), size of 
avalanche relative to avalanche path, running 
surface (ground, old snow or new snow surface) 
and location of release (Perla and Martinelli, 
1978). For the purpose of this study, only wet slab 
and wet loose avalanches are analyzed.  The 
method used to identify wet avalanches varies 
with the observer at Bridger Bowl.  Methods 
include hand tests in the starting zone and 
deposition zone (Colbeck et al., 1990, p.4), the 
presence of sun wheels, development of melt 
around trees, the presence/absence of a powder 
cloud, bed and flank striations, and the 
appearance of the avalanche debris.  Bridger Bowl 
closes in early April but on a different day each 
year.   March is a consistent time period which 
spans the wet-snow-avalanche-hazard period of 
highest interest.  Therefore, only data from March 
are in the database that was analyzed.    

The presence or absence of a recorded wet 
avalanche is treated as a binomial response.  
Days with one or more recorded wet avalanches, 
regardless of size or type of release are labeled as 
wet avalanche days and are assigned a one.  
Days with no recorded wet avalanches are 
assigned a zero. A day with a dry avalanche and 
no wet avalanches is assigned a zero 

The primary weather and snowpack data were 
used to calculate 14 additional variable classes.  
These classes include average temperature, 
temperature range (maximum, minimum, and 
average), day-time temperature range, overnight 
temperature range, and degree-day temperature.  
(Degree day temperature values index the heating 
above a specified reference temperature (0oC) 
over multiple days.  For example, the degree day 
value for the prediction day and the day prior is the 
sum of the difference between the maximum 
temperature and 0oC on the prediction day and the 
same difference on the day prior.) Snowpack and 
precipitation classes include change in snow 
depth, total snowpack settlement, age of new 
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snow, new snow depth, new snow water 
equivalent, and new snow density.  Rainfall was 
not assessed because rainfall is rare in March at 
Bridger Bowl.    Within each variable class there 
were several variables which reflected time lags.  
Studies by Bovis (1977), Fohn et al. (1977), Davis 
et al. (1999) and Gassner et al. (2000) 
incorporated up to five preceding days into the 
variables used in their studies and found that 
three-day-prior variables were the oldest 
significant variables.  This study limits the number 
of preceding or leading days to three.  Prediction 
day (0) always refers to the day the model is 
predicting for, and is the day that the one day prior 
(-1), two days prior (-2) and three days prior (-3) 
variables lead up to. The procedure to calculate 
the three-day-cumulated value of a variable is to 
add the three days prior data to the prediction day 
value. The data was divided into a new snow 
dataset and an old snow dataset.  A new-snow 
day has measured newly fallen snow in the past 
48 hours, while an old-snow day has no measured 
newly fallen snow in that time period. A total of 68 
primary and calculated variables were tested 
(Romig, 2004). 

After the variables were developed, the data in 
the new snow and old snow dataset were 
analyzed using MINITAB® .  First the data were  
assessed for normality with the Anderson-Darling 
Normality Test (α = 0.05 significance level) 
(Minitab, 2003).  An F-Test was then used to 
determine equal variance for variables that were 
normally distributed (Minitab, Inc., 2003).  
Levene’s Test for equal variance was used for 
variables with nonparametric or non-normal 
distributions (Minitab, 2003).  If necessary, up to 
three transformations were attempted for each 
variable to correct for lack of normality and 
unequal variance.   The Box-Cox Transformation 
procedure was used on each variable which 
required transformation, where lambda (λ) is the 
estimated exponent for each variable being 
transformed (Minitab, 2003).  A 2-Sample t-test 
with pooled sample variance was used to test the 
means of those variables with normal distributions 
and equal variance (Neter et al., 1996).  A 2-
Sample t-test with unpooled variance was used to 
test the means of those variables with normal 
distributions and unequal variance.  The Mann-
Whitney test for equal medians was used for 
variables that remained nonparametric with equal 
variance after transformation (Neter et al., 1996).   
The details of the significance tests can be found 
in Romig (2004). 

For model selection and testing purposes, the 
new and old snow datasets were divided into 

training and testing datasets.  A random number 
generator was used to select 80% of the new 
snow dataset to create the new snow training 
dataset.  The remaining 20% was used to create 
the new snow testing dataset.  The same 
procedure was employed to create the old snow 
training and testing datasets.   

After the significant (α = 0.05 significance 
level)  old snow and new snow variables were 
identified, correlation tests were performed and 
binomial logistic regression was used to test the 
predictive capabilities of the variables, as well as 
to develop and test  the models on the training and 
testing datasets (Minitab, 2003).  

    
3. RESULTS 
 

The original Bridger Bowl dataset containing 
all days in March from 1968-2001 (excluding 
1996) has a total of 1,046 days, 72 of which have 
recorded wet avalanches.  The remaining 974 
days either had recorded dry avalanches or no 
avalanches at all.  Only 15 days out of the 1046 
total number of days in the dataset had recorded 
rain totals.  Rain was not examined further as a 
variable.   Wet slab avalanches make up 31% of 
the total number of wet avalanches and wet loose 
avalanches make up the remaining 69%.  
Naturally released wet avalanches make up 42% 
of the total number of recorded wet avalanches at 
Bridger bowl and the remaining 58% were 
artificially released wet avalanches.  The results 
therefore, are applicable only to the Bridger Bowl 
ski area and not the surrounding back county 
terrain. 

The original dataset was divided into a new 
snow dataset and an old snow dataset.  Forty four 
variables showed a significant difference between 
old and new snow (Romig, 2004).  Although there 
are nearly twice as many days in the new snow 
dataset than there are in the old snow dataset, the 
number of wet avalanche days differs by just six 
days between the two datasets.  
 
4. DISCUSSION 
 
     The variables that were found to have the best 
predictive capabilities for old snow and new snow 
wet avalanche conditions are listed in Table 1.  
These variables had the highest percent 
concordant pairs (approximately 60% or greater) 
when tested individually and in combination with 
other variables.  Concordant pairs indicate good 
correspondence between predicted probability of a 
wet avalanche and a wet avalanche day.  The 
decision point for the concordant, discordant and  
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tied pairs in the binomial logistic regression 
program is 50%. 

The selected variables maintained a 
significant p-value (<0.05) in the majority of the 
binomial logistic regression tests.  In most cases, 
only the best predictor from a group of correlated 
variables was retained.  However some slightly 
less well correlated variables were retained such 
as one, two, and three-day new snow cumulative 
snowfall and new snow water equivalent, as well 
as the averaged one and three-day cumulative 
new snow density variables.  These correlated 
variables had nearly identical predictive success 
or their success depended upon which 
temperature or snowpack settlement variable it 
was tested with.   
       At this point, the old snow and new snow 
training and testing datasets were created.  All 
possible combinations of the old snow and new 
snow variables listed in Table 1 were entered into 
a binomial logistic regression model of the old 
snow and new snow training sets and then tested 
on the appropriate old snow and new snow testing 
datasets.  Model performance was ranked 
primarily on p-values and percent concordant 
pairs.  A high percentage of concordant pairs  
indicates good correspondence between predicted 
probability of a wet avalanche and days with wet  
 

avalanches. The final criterion is whether the user 
will need to use forecasted information to calculate 
the model variables or if that information is readily 
available without forecast.  This requirement does 
not imply that variables with better predictive 
success were discarded because they would be 
more difficult for the user to calculate.  More 
elaborate variables, or those variables that 
required more information, were only discarded if 
there was an alternative, more straight-forward 
variable that had a comparable predictive success 
rate.  The top three old snow and new snow 
models  were retained for further analysis, all other 
models were discarded (Romig, 2004). 
      To further test the predictive capabilities of the 
top three old snow and new snow models, each 
model was converted into a binomial logistic 
regression logit equation of the general form: 
 
 g(P(i)) = β0 + β x’j  = ln (P(i)/(1-P(i)))   (1) 
 
Where P(i) represents the probability there will be 
a wet avalanche on the  ith day, β0 is the intercept, 
β is a vector of coefficients associated with the 
predictors which are estimated by maximum 
likelihood methods, x’j is a vector of predictor 
variables associated with the jth covariate (e.g., 
prediction day minimum temperature).  The link 

Variable 

Wet 
Avalanche 
Day  Mean 

or 
Median† 

No 
Wet 

Avalanche 
Day Mean 

or 
Median† P 

OLD SNOW      
Day of Year 78† 72† 0.007 
Prediction Day Maximum Temperature*                         °C 9.1 5.1 0.000 
Prediction Day Minimum Temperature                           °C -1.1† -5.0† 0.000 
Prediction Day Average Temperature*                           °C 3.2 -0.3 0.000 
Two Day Change in Total Snow Depth                                        cm -10.2† -5.1† 0.000 
NEW SNOW      
Prediction Day Minimum Temperature                                           °C -7.6† -8.9† 0.005 
Prediction Day Overnight Temperature Range                        °C 7.3 9.9 0.001 
Two-Day Snowpack Settlement                                                     cm -10.2† -7.5† 0.003 
Two-Day Cumulative New Snow Depth                                        cm 21.7† 15.2† 0.003 
Three-Day Cumulative New Snow Depth                        cm 32.4† 20.3† 0.002 
One-Day Cumulative New Snow Water Equivalent              cm 1.3cm† 0.8cm† 0.010 
Two-Day Cumulative New Snow Water Equivalent              cm 1.9cm† 1.2cm† 0.000 
Three-Day Cumulative New Snow Water Equivalent      cm 2.6cm† 1.5cm† 0.000 
Averaged One-Day New Snow Density                       kg/m3 93.1† 74.5†   0.023 
Averaged Three-Day Cumulative New Snow Density kg/m3 93.1†  75.9†  0.029 

Table1.  Data used to develop the  ‘old snow’ and ‘new snow’ models. 

* Variable transformed but shown here as an untransformed value of median or mean 
†   Identifies a value that is a median not the mean.  Means are not marked.
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function has a mean of zero and a variance of 
π2 / 3 (Minitab, 2003).   
     Model B was selected as the best for spring-
time wet avalanche prediction (Table 2).  The 
predictor variables in Model B are prediction day 
minimum temperature and two-day change in 
total snow depth.  The test dataset showed 
similar results to the training dataset (Table 2).  
But the P-values for two-day change in total 
snow depth are not significant.  The data from 
the training and test data set were then 
combined to produce a single old snow dataset.  
The probability (P(i)) on a day of interest can be  
 

evaluated using the following equation: 
 
P(i) = e x’

j 
β/(1+ e x’

j 
β)   (2) 

 
Where          e x’

j 
β = exp{ β0 + β1 x1i + β2 x2i}    (3) 

 
for two predictor variables.  The subscripts 1 and 
2 identify the two predictor variables on the ith 
day. The coefficients β0 , β1 , β2 , are the 
regression coefficients for the intercept, the first 
predictor variable and the second predictor 
variable.   Unfortunately, the intercept value β0  
was omitted from the equation in Romig (2004).   
  

 
 
 
 

 
 
 

 
 
 
 

 Old Snow Training Dataset Results Old Snow Testing Dataset Results 

 
Model B predictors:      prediction day minimum temperature   (MinT0) and 
                                        two-day change in total snow depth  (HS0-HS-2) 
 
Predictor 
Variables* MinT0 HS0-HS-2 MinT0 HS0-HS-2 
P-Values 0.013 0.004 0.080 0.300 
Odds Ratios 1.16 0.90 1.17 0.94 
% Concordant, 
Discordant & 
Tied Pairs 

Concordant 
75.0% 

Discordant 
24.0% 

Tied   
1.0% 

Concordant 
72.8% 

Discordant 
24.1`% 

Tied   
3.1% 

 New Snow Training Dataset Results New Snow Testing Dataset Results 

Model E predictors:    prediction day minimum temperature (MinT0) and 
                                      three-day cumulative new snow water equivalent ( HNW0,-1,-2,-3) 
 

Predictor 
Variables* MinT0 HNW0,-1,-2,-3 MinT0 HNW0,-1,-2,-3 
P-Values 0.013 0.001 0.016 0.078 
Odds Ratios 1.13 1.40 1.24 1.51 
%  
Concordant, 
Discordant & 
Tied Pairs 

Concordant 
72.1% 

Discordant 
26.4% 

Tied   
1.5% 

Concordant 
71.9% 

Discordant 
27.3% 

Tied   
0.7% 

Table 2.  Binomial logistic regression results for the old snot model B and new snow model E (Romig, 2004). 
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This error is corrected here, and the  β 
coefficients and the standard error coefficients 
for the two combined models are reported in 
Table 3.  The binomial logistic regression results 
are correct, only the predicted probabilities for 
each prediction day are incorrect.     

 
 
 

  Figure 2 shows a histogram for old snow.  The 
calculated probability of days with wet snow 
avalanche is shown as is the calculated 
probability of days with no observed wet snow 
avalanches.  The line that divides both 
distributions and produces the largest number of 
correct predictions is at 22% and constitutes a 
basis for estimating the success of the model.  
Of the 32 wet avalanche days, 21 (66%) are 
incorrectly classified (probability < 22%).  These 
constitute Type II error in which a no wet 
avalanche day is predicted but one occurred on 
that day.  Fourteen days with wet avalanches 
(34%) are correctly classified (probability ≥ 
22%).  Similarly, of the 300 days with no wet 
avalanches, 14 (5%) are incorrectly classified 
(probability ≥ 22%).  This represents Type I error 
in which a day without wet avalanches is 
predicted but one occurred.  Two hundred thirty 
one days (95%) with no wet avalanches were 
correctly predicted by the model (probability ≥ 
22%). The old snow model has an 89% overall 
success rate ((11 d+286 d)/ 3307 d), but much 
of that success is attributable to the correct 
prediction of days without wet avalanches rather 
than days with wet avalanches.  The model does 
not provide a yes/no answer to the question, 
“Will there be a wet avalanche day today?”   
Rather, the model calculates a probability that 
the day will have a wet avalanche. 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Combined Old 
Snow Dataset  

Combined New 
Snow Dataset  

β0 Intercept -2.32 Intercept   -2.40
SE 
Coeff.   0.364   0.373

β1 MinT0 0.148 MinT0 0.146
SE 
Coeff.   0.048      0.043

β2 HS0-HS-2 -0.087 HNW0,-1,-2,-3 0.328
SE 
Coeff.   0.030   0.092

Figure 2.  Histogram of Model B for old snow combined training and testing data.   

Table 3.  Coefficients and standard error for 
calculation of probability for combined old snow 
and combined new snow datasets. MinT0  = 
prediction day minimum temperature.   

HS0-HS-2  = two day total change in snow depth.  
HNW0,-1,-2,-3  = three day cumulative new snow 
water equivalent. 
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The selected new snow model (E) uses 
prediction day minimum temperature and three-
day cumulative new snow water equivalent as 
predictor variables (Table 2).  The testing 
dataset results are fairly consistent with the 
training dataset for model E (Table 2), but the                              
three-day cumulative new snow water equivalent 
in the testing data set is insignificant while it is 
significant in the training data set. The new snow 
training and test datasets were then combined to 
produce a single dataset.  The combined 
dataset was used to re-compute the coefficients 
for equation 3.  Those coefficients are reported 
in Table 3 and were applied to the new snow 
data sets to find probabilities for each prediction  

day for which there were observations.  
     Figure 3 shows a histogram of the calculated 
probability of days with wet snow avalanche and 
the probability of days when no wet snow 
avalanches were observed. This figure does not 
display a dividing line for estimation of model 
success because reduction of the total error can 
only be achieved if the cutoff is big which is 
equivalent to always saying there will be no 
avalanche.  This result reiterates the point that 
any success Model E has is due to the correct 
classification of non-avalanche days.  
Unfortunately the days with wet avalanches are 
of interest.  For this reason Model E success is 
not reported.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Histogram of Model B for new snow combined training and testing data. 
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There is some limited evidence that separation 
of old and new snow is justified from the 
perspective of assessing wet snow avalanche 
days.  The six variables significant in both the 
new snow and the old snow data sets were  
tested.  For each variable, a probability was 
calculated to determine whether the mean or 
median for old snow on days with wet 
avalanches was different from the mean or 
median for new snow on days with wet 
avalanches (Table 4).  Only the temperature 

variables were significant.  The settlement 
variables showed no significant difference 
between medians using the Mann-Whitney test.  
Several new-snow variables which are related to 
new snow depth, snow water equivalent and 
density could only be in the new snow data set 
and so could not be used to test whether the 
new snow variable was different than the old 
snow variable. Old snow wet avalanche days 
may be different than new snow wet avalanche 
days.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Significant 
Variables Test 

Old Snow 
Wet 

Avalanche 
Day Mean or 

Median 

New Snow 
Wet 

Avalanche 
Day Mean 
or Median 

Old Snow – New 
Snow Wet 

Avalanche Day 
Means or 
Medians 

Significant?

MinT0 2-Sample T-Test -1.1°C -7.6C 6.5°C Yes 

AvgMinT0,-1‡* 2-Sample T-Test -3.5°C -7.3°C 3.8°C Yes 

AvgT0* 2-Sample T-Test  3.2°C -2.9°C 6.1°C Yes 

Stl 0,-1 Mann-Whitney -5.1       cm -5.1    cm 0.0  cm No 

Stl 0,-1,-2 Mann-Whitney -10.2     cm -10.2  cm 0.0  cm No 

Stl 0,-1,-2,-3 Mann-Whitney -15.2      cm  21.7   cm 6.5  cm No 

Table 4.  Test of whether means or medians of variables significant for predicting both old snow and 
new snow wet avalanche days are different (α=0.05).  See text for symbol definitions. 

*Transformed Variables  
‡Variables that used unpooled sample variance in 2-Sample T-Test. All other variables used 
    pooled sample variance in 2-Sample T-Test. 
  
 Medians are Mann-Whitney values, all others are means. 
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5.  CONCLUSIONS 
   

The idea for this study came from 
discussions with Bridger Bowl avalanche 
professionals who expressed their concern 
about uncertainties they face during the spring 
when wet avalanche conditions develop quickly 
and pose a risk to the skiing public.  This study 
focuses on wet avalanche conditions at Bridger 
Bowl in March, but could be reasonably 
extended to late February and early April.  
Because the data comes from a ski area that 
uses avalanche control, the model developed 
should not be used outside the boundaries of 
the ski area.   
     Sixty eight variables were derived from seven 
primary pieces of data collected on 1,046 days.  
The variables reflect temperature, snow 
settlement, and precipitation.  The dataset was 
split into days with snow ≤ 48 hours old and 
days with snow > 48 hours old.  There is some 
justification for separating old and new snow 
data.  Three temperature variables in particular 
are significantly different for the two data stets.  
Five old snow variables and ten new snow 
variables had the best predictive success and 
were retained for the final model building 
process.  The final old snow model uses the 
prediction day minimum temperature and total  
change in snowpack depth between the 
prediction day and two days prior to calculate a 
wet avalanche probability.  This model has an 
89% overall success rate, but much of that 
success is related to correct prediction of days 
with no wet avalanches.  The final new snow wet 
avalanche prediction model uses the prediction 
day minimum temperature and the cumulative 
snow water equivalent measured from the 
prediction day to the three days prior to 
prediction day for calculations.  The overall 
success rate of the new snow model was not 
estimated because the division point to 
maximize the success rate is too large to 
produce a reasonable result.  The models are 
much better at predicting conditions on days 
with no wet avalanches than they are at 
successfully predicting days with wet 
avalanches. This emphasizes the shortcomings 
of limited data, the complexity of the problem, 
and the difficulty in numerically forecasting wet 
snow avalanches.   Thus, while these models 
can provide additional tools for avalanche 
forecasting professionals, they are only tools.  
Avalanche forecasting and decisions about 
closures and safety, will continue to rely on 

human forecasters using various tools and 
conventional techniques (McClung, 2002). 
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