468 research outputs found

    Quantum Oscillations of Photocurrents in HgTe Quantum Wells with Dirac and Parabolic Dispersions

    Get PDF
    We report on the observation of magneto-oscillations of terahertz radiation induced photocurrent in HgTe/HgCdTe quantum wells (QWs) of different widths, which are characterized by a Dirac-like, inverted and normal parabolic band structure. The photocurrent data are accompanied by measurements of photoresistance (photoconductivity), radiation transmission, as well as magneto-transport. We develop a microscopic model of a cyclotron-resonance assisted photogalvanic effect, which describes main experimental findings. We demonstrate that the quantum oscillations of the photocurrent are caused by the crossing of Fermi level by Landau levels resulting in the oscillations of spin polarization and electron mobilities in spin subbands. Theory explains a photocurrent direction reversal with the variation of magnetic field observed in experiment. We describe the photoconductivity oscillations related with the thermal suppression of the Shubnikov-de Haas effect.Comment: 16 pages, 13 figure

    Expression and Native Structure of Cytosolic Class II Small Heat-Shock Proteins

    Full text link

    STRUCTURE OF METHYLPHEOPHORBIDE-RCI

    Get PDF
    he methanolic extract of the cyanobacterium (blue-green alga) Spirulina geitleri has been treated with methanolic acid to convert all chlorophyllous pigments to their methylpheophorbides. Fractionation of the latter from methylpheophorbide a by thin layer chromatography and high pressure liquid chromatography yielded methylpheophorbide-RCI. Its structure has been determined as 132S-hydroxy-20-chloro-methylpheophorbide a by 1H-nuclear magnetic resonance, absorption and circular dichroism spectroscopy, mass spectrometry and by partial synthesis from chlorophyll a. The pigment is isolated from Spirulina geitleri irrespective of the use or omission of chlorinated substances during the isolation procedure

    Evaluating GEDI data fusions for continuous characterizations of forest wildlife habitat

    Get PDF
    Continuous characterizations of forest structure are critical for modeling wildlife habitat as well as for assessing trade-offs with additional ecosystem services. To overcome the spatial and temporal limitations of airborne lidar data for studying wide-ranging animals and for monitoring wildlife habitat through time, novel sampling data sources, including the space-borne Global Ecosystem Dynamics Investigation (GEDI) lidar instrument, may be incorporated within data fusion frameworks to scale up satellite-based estimates of forest structure across continuous spatial extents. The objectives of this study were to: 1) investigate the value and limitations of satellite data sources for generating GEDI-fusion models and 30 m resolution predictive maps of eight forest structure measures across six western U.S. states (Colorado, Wyoming, Idaho, Oregon, Washington, and Montana); 2) evaluate the suitability of GEDI as a reference data source and assess any spatiotemporal biases of GEDI-fusion maps using samples of airborne lidar data; and 3) examine differences in GEDI-fusion products for inclusion within wildlife habitat models for three keystone woodpecker species with varying forest structure needs. We focused on two fusion models, one that combined Landsat, Sentinel-1 Synthetic Aperture Radar, disturbance, topographic, and bioclimatic predictor information (combined model), and one that was restricted to Landsat, topographic, and bioclimatic predictors (Landsat/topo/bio model). Model performance varied across the eight GEDI structure measures although all representing moderate to high predictive performance (model testing R2 values ranging from 0.36 to 0.76). Results were similar between fusion models, as well as for map validations for years of model creation (2019–2020) and hindcasted years (2016–2018). Within our wildlife case studies, modeling encounter rates of the three woodpecker species using GEDI-fusion inputs yielded AUC values ranging from 0.76–0.87 with observed relationships that followed our ecological understanding of the species. While our results show promise for the use of remote sensing data fusions for scaling up GEDI structure metrics of value for habitat modeling and other applications across broad continuous extents, further assessments are needed to test their performance within habitat modeling for additional species of conservation interest as well as biodiversity assessments

    Integrating snow science and wildlife ecology in Arctic-boreal North America

    Get PDF
    Snow covers Arctic and boreal regions (ABRs) for approximately 9 months of the year, thus snowscapes dominate the form and function of tundra and boreal ecosystems. In recent decades, Arctic warming has changed the snowcover\u27s spatial extent and distribution, as well as its seasonal timing and duration, while also altering the physical characteristics of the snowpack. Understanding the little studied effects of changing snowscapes on its wildlife communities is critical. The goal of this paper is to demonstrate the urgent need for, and suggest an approach for developing, an improved suite of temporally evolving, spatially distributed snow products to help understand how dynamics in snowscape properties impact wildlife, with a specific focus on Alaska and northwestern Canada. Via consideration of existing knowledge of wildlife-snow interactions, currently available snow products for focus region, and results of three case studies, we conclude that improving snow science in the ABR will be best achieved by focusing efforts on developing data-model fusion approaches to produce fit-for-purpose snow products that include, but are not limited to, wildlife ecology. The relative wealth of coordinated in situ measurements, airborne and satellite remote sensing data, and modeling tools being collected and developed as part of NASA\u27s Arctic Boreal Vulnerability Experiment and SnowEx campaigns, for example, provide a data rich environment for developing and testing new remote sensing algorithms and retrievals of snowscape properties

    ELEVATED PHENYLACETIC ACID LEVELS DO NOT CORRELATE WITH ADVERSE EVENTS IN PATIENTS WITH UREA CYCLE DISORDERS OR HEPATIC ENCEPHALOPATHY AND CAN BE PREDICTED BASED ON THE PLASMA PAA TO PAGN RATIO

    Get PDF
    Background Phenylacetic acid (PAA) is the active moiety in sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB, HPN-100), both are approved for treatment of urea cycle disorders (UCDs) - rare genetic disorders characterized by hyperammonemia. PAA is conjugated with glutamine in the liver to form phenylacetyleglutamine (PAGN), which is excreted in urine. PAA plasma levels ≥500 μg/dL have been reported to be associated with reversible neurological adverse events (AEs) in cancer patients receiving PAA intravenously. Therefore, we have investigated the relationship between PAA levels and neurological AEs in patients treated with these PAA pro-drugs as well as approaches to identifying patients most likely to experience high PAA levels. Methods The relationship between nervous system AEs, PAA levels and the ratio of plasma PAA to PAGN were examined in 4683 blood samples taken serially from: [1] healthy adults [2], UCD patients ≥2 months of age, and [3] patients with cirrhosis and hepatic encephalopathy (HE). The plasma ratio of PAA to PAGN was analyzed with respect to its utility in identifying patients at risk of high PAA values. Results Only 0.2% (11) of 4683 samples exceeded 500 ug/ml. There was no relationship between neurological AEs and PAA levels in UCD or HE patients, but transient AEs including headache and nausea that correlated with PAA levels were observed in healthy adults. Irrespective of population, a curvilinear relationship was observed between PAA levels and the plasma PAA:PAGN ratio, and a ratio > 2.5 (both in μg/mL) in a random blood draw identified patients at risk for PAA levels > 500 μg/ml. Conclusions The presence of a relationship between PAA levels and reversible AEs in healthy adults but not in UCD or HE patients may reflect intrinsic differences among the populations and/or metabolic adaptation with continued dosing. The plasma PAA:PAGN ratio is a functional measure of the rate of PAA metabolism and represents a useful dosing biomarker

    Combined use of gliadins and SSRs to analyse the genetic variability of the Spanish collection of cultivated diploid wheat (Triticum monococcum L. ssp. monococcum)

    Get PDF
    This work studied the combined use of gliadins and SSRs to analyse inter- and intra-accession variability of the Spanish collection of cultivated einkorn (Triticum monococcum L. ssp. monococcum) maintained at the CRF-INIA. In general, gliadin loci presented higher discrimination power than SSRs, reflecting the high variability of the gliadins. The loci on chromosome 6A were the most polymorphic with similar PIC values for both marker systems, showing that these markers are very useful for genetic variability studies in wheat. The gliadin results indicated that the Spanish einkorn collection possessed high genetic diversity, being the differentiation large between varieties and small within them. Some associations between gliadin alleles and geographical and agro-morphological data were found. Agro-morphological relations were also observed in the clusters of the SSRs dendrogram. A high concordance was found between gliadins and SSRs for genotype identification. In addition, both systems provide complementary information to resolve the different cases of intra-accession variability not detected at the agro-morphological level, and to identify separately all the genotypes analysed. The combined use of both genetic markers is an excellent tool for genetic resource evaluation in addition to agro-morphological evaluation

    Living on the edge: utilising lidar data to assess the importance of vegetation structure for avian diversity in fragmented woodlands and their edges

    Get PDF
    Context: In agricultural landscapes, small woodland patches can be important wildlife refuges. Their value in maintaining biodiversity may, however, be compromised by isolation, and so knowledge about the role of habitat structure is vital to understand the drivers of diversity. This study examined how avian diversity and abundance were related to habitat structure in four small woods in an agricultural landscape in eastern England. Objectives: The aims were to examine the edge effect on bird diversity and abundance, and the contributory role of vegetation structure. Specifically: what is the role of vegetation structure on edge effects, and which edge structures support the greatest bird diversity? Methods: Annual breeding bird census data for 28 species were combined with airborne lidar data in linear mixed models fitted separately at (i) the whole wood level, and (ii) for the woodland edges only. Results: Despite relatively small woodland areas (4.9–9.4 ha), bird diversity increased significantly towards the edges, being driven in part by vegetation structure. At the whole woods level, diversity was positively associated with increased vegetation above 0.5 m and especially with increasing vegetation density in the understorey layer, which was more abundant at the woodland edges. Diversity along the edges was largely driven by the density of vegetation below 4 m. Conclusions: The results demonstrate that bird diversity was maximised by a diverse vegetation structure across the wood and especially a dense understorey along the edge. These findings can assist bird conservation by guiding habitat management of remaining woodland patches
    • …
    corecore