79 research outputs found
The impact of social media on marketing using bibliometrics analysis
Social media has grown very quickly and has affected all dimensions of the world’s community. The purpose of this article is to review valid articles on the relationship between social media and promotion using manual and bibliometrics analysis methods and identify top themes in these articles. We review the papers published between 2007 and the first month of 2019 in Scopus. 1,840 articles were published in the mentioned period. In this article, we review various charts including word dynamics, the contributions of different countries, country scientific production, corresponding author's country, the frequency distribution of sources, collaboration network and country collaboration map. The study indicates that Canada, Australia and France were the most productive countries in this area
Dietary intakes of adolescent girls in relation to weight status
Background: To examine macronutrient and micronutrient intake of adolescent girls of Tehran, capital of Iran to discover any malnutrition in relation to weight status and dieting. Methods: A cross-sectional study was conducted. Four hundred 11- to 17-year-old students were selected by multistage cluster sampling from secondary and high schools of Tehran. The information about dietary intakes was taken by food frequency questionnaire and 24-hour recall form. The students' body mass indices (BMIs) were measured and were classified according to National Center for Health Statistics/Center for Disease Control and Prevention (2000) growth charts. Participants were also questioned about body image and dieting. Results: 6.7 of adolescent girls were classified as being obese, 14.6 overweight, 75.4 normal and 3.2 underweight. Students 11-13 year old, had mean intakes lower than estimated average requirement (EAR) for folic acid, vitamin E, calcium, magnesium, phosphorus, potassium and sodium, and 14-18 year old students had mean intakes lower than EAR for niacin, pyridoxine, folic acid, pantothenic acid, vitamin E, calcium, magnesium, phosphorus, potassium, sodium and zinc. Obese and overweight adolescents had less carbohydrate, thiamin, niacin, iron and selenium intake. The participants, who were dieting, used significantly less amounts of proteins, carbohydrates, thiamin, niacin, iron, selenium, sodium and zinc. Conclusion: Knowing the harmful consequences of nutrient deficiency especially in adolescents, nutrition education must be emphasized in schools to promote nutritional literacy
Gelatinases Increase in Bleomycin-induced Systemic Sclerosis Mouse Model
Systemic sclerosis is a fibrotic autoimmune disease in which aberrant remodeling of the extracellular matrix in organs disturbs their functionalities. The aim of this study was to investigate the expression of gelatinases on systemic sclerosis. Consequently, a mouse model of systemic sclerosis was employed and the gelatinolytic activity of gelatinases was evaluated on the fibrotic tissues of this model. Two groups of ten mice were considered in this work: a group of systemic sclerosis model and control group. For the generation of systemic sclerosis model, mice received bleomycin, while the control group was subjected to phosphate buffered saline (PBS) reception. Mice were tested for fibrosis by using trichrome staining, hydroxyproline measurement and α-SMA detection in tissue sections. Additionally, the gelatinolytic activity of matrix metalloproteinase 2 and matrix metalloproteinase 9 were measured using gelatin zymography in lungs and skin tissue homogenates. The obtained results indicated that subcutaneous injection of bleomycin-induced fibrosis in skin and lung tissues of mice. Pro and active forms of matrix methaloproteinase 9 were increased in fibrotic lung tissues (p<0.05 and p<0.01, respectively), while, the gelatinolytic activity of MMP2 was unaffected in these tissues. Additionally, in skin tissues of bleomycin-treated animals, both pro and active forms of MMP9 and MMP2 were increased (p<0.05). Pro and active forms of gelatinases increase differently in skin and lung tissues of bleomycin-induced scleroderma
The role of progesterone in cellular apoptosis of skin and lung in a bleomycin-injured mouse model
Systemic sclerosis is a female predominant, a fibrotic autoimmune disease in which disturbance in tissue homeostasis and cell turnover including cell apoptosis are central events in pathogenesis. Sex hormones are known as the important players in sexual dimorphism of autoimmune diseases and in tissue homeostasis. Progesterone influences autoimmune disease via its immunomodulatory effect or by its direct action on parenchymal cell function. On the other hand, this hormone impacts tissue homeostasis by acting on cell apoptosis in a different situation. The objective of this study was to examine the effect of progesterone on cellular apoptosis of skin and lung tissues in a mouse model of scleroderma. Four group of mice were involved in this study with 10 mice in each. The fibrotic model was induced by daily subcutaneous injection of bleomycin for 28 days. One week after initiation of fibrosis induction, mice received subcutaneous progesterone alone or with bleomycin for 21 days. Control group received only Phosphate buffered saline PBS. After 28 days, under lethal anesthesia skin and lung tissues were harvested for histological assessment and hydroxyproline measurement. Apoptosis in tissue sections was detected by TUNEL assay technique. Bleomycin administration induced fibrosis in skin and lung tissues. Severe apoptosis was seen in skin and lung tissues of the bleomycin-treated group (p0.05) or in the lung (p>0.05) did not alter apoptosis in bleomycin-treated animals. Our data confirm the role of apoptosis in the pathogenesis of fibrosis in this model; however, progesterone does not affect cellular apoptosis in skin and lung tissues of bleomycin-injured animals. Copyright© February 2019, Iran J Allergy Asthma Immunol. All rights reserved
Surface Doping Quantum Dots with Chemically Active Native Ligands: Controlling Valence without Ligand Exchange
One remaining challenge in the field of colloidal semiconductor nanocrystal quantum dots is learning to control the degree of functionalization or valence per nanocrystal. Current quantum dot surface modification strategies rely heavily on ligand exchange, which consists of replacing the nanocrystal\u27s native ligands with carboxylate- or amine-terminated thiols, usually added in excess. Removing the nanocrystal\u27s native ligands can cause etching and introduce surface defects, thus affecting the nanocrystal\u27s optical properties. More importantly, ligand exchange methods fail to control the extent of surface modification or number of functional groups introduced per nanocrystal. Here, we report a fundamentally new surface ligand modification or doping approach aimed at controlling the degree of functionalization or valence per nanocrystal while retaining the nanocrystal\u27s original colloidal and photostability. We show that surface-doped quantum dots capped with chemically active native ligands can be prepared directly from a mixture of ligands with similar chain lengths. Specifically, vinyl and azide-terminated carboxylic acid ligands survive the high temperatures needed for nanocrystal synthesis. The ratio between chemically active and inactive-terminated ligands is maintained on the nanocrystal surface, allowing to control the extent of surface modification by straightforward organic reactions. Using a combination of optical and structural characterization tools, including IR and 2D NMR, we show that carboxylates bind in a bidentate chelate fashion, forming a single monolayer of ligands that are perpendicular to the nanocrystal surface. Moreover, we show that mixtures of ligands with similar chain lengths homogeneously distribute themselves on the nanocrystal surface. We expect this new surface doping approach will be widely applicable to other nanocrystal compositions and morphologies, as well as to many specific applications in biology and materials science
Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals
Colloidal semiconductor nanocrystals possess unique properties that are unmatched by other chromophores such as organic dyes or transition-metal complexes. These versatile building blocks have generated much scientific interest and found applications in bioimaging, tracking, lighting, lasing, photovoltaics, photocatalysis, thermoelectrics, and spintronics. Despite these advances, important challenges remain, notably how to produce semiconductor nanostructures with predetermined architecture, how to produce metastable semiconductor nanostructures that are hard to isolate by conventional syntheses, and how to control the degree of surface loading or valence per nanocrystal. Molecular chemists are very familiar with these issues and can use their expertise to help solve these challenges. In this Perspective, we present our group\u27s recent work on bottom-up molecular control of nanoscale composition and morphology, low-temperature photochemical routes to semiconductor heterostructures and metastable phases, solar-to-chemical energy conversion with semiconductor-based photocatalysts, and controlled surface modification of colloidal semiconductors that bypasses ligand exchange
Diversity of Global Rice Markets and the Science Required for Consumer-Targeted Rice Breeding
With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a ‘one size fits all’ crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market
- …