3,065 research outputs found
Neutral gas in Lyman-alpha emitting galaxies Haro 11 and ESO 338-IG04 measured through sodium absorption
Context. The Lyman alpha emission line of galaxies is an important tool for
finding galaxies at high redshift, and thus probe the structure of the early
universe. However, the resonance nature of the line and its sensitivity to dust
and neutral gas is still not fully understood.
Aims. We present measurements of the velocity, covering fraction and optical
depth of neutral gas in front of two well known local blue compact galaxies
that show Lyman alpha in emission: ESO 338-IG 04 and Haro 11. We thus test
observationally the hypothesis that Lyman alpha can escape through neutral gas
by being Doppler shifted out of resonance.
Methods. We present integral field spectroscopy from the GIRAFFE/Argus
spectrograph at VLT/FLAMES in Paranal, Chile. The excellent wavelength
resolution allows us to accurately measure the velocity of the ionized and
neutral gas through the H-alpha emission and Na D absorption, which traces the
ionized medium and cold interstellar gas, respectively. We also present
independent measurements with the VLT/X-shooter spectrograph which confirm our
results.
Results. For ESO 338-IG04, we measure no significant shift of neutral gas.
The best fit velocity is -15 (16) km/s. For Haro 11, we see an outflow from
knot B at 44 (13) km/s and infalling gas towards knot C with 32 (12) km/s.
Based on the relative strength of the Na D absorption lines, we estimate low
covering fractions of neutral gas (down to 10%) in all three cases.
Conclusions. The Na D absorption likely occurs in dense clumps with higher
column densities than where the bulk of the Ly-alpha scattering takes place.
Still, we find no strong correlation between outflowing neutral gas and a high
Lyman alpha escape fraction. The Lyman alpha photons from these two galaxies
are therefore likely escaping due to a low column density and/or covering
fraction.Comment: 9 pages, 3 figure
Motion, flash, and flicker:A unified spatiotemporal model of perceived edge sharpening
Blurred edges appear sharper in motion than when they are stationary. We proposed a model of this motion sharpening that invokes a local, nonlinear contrast transducer function (Hammett et al, 1998 Vision Research 38 2099-2108). Response saturation in the transducer compresses or 'clips' the input spatial waveform, rendering the edges as sharper. To explain the increasing distortion of drifting edges at higher speeds, the degree of nonlinearity must increase with speed or temporal frequency. A dynamic contrast gain control before the transducer can account for both the speed dependence and approximate contrast invariance of motion sharpening (Hammett et al, 2003 Vision Research, in press). We show here that this model also predicts perceived sharpening of briefly flashed and flickering edges, and we show that the model can account fairly well for experimental data from all three modes of presentation (motion, flash, and flicker). At moderate durations and lower temporal frequencies the gain control attenuates the input signal, thus protecting it from later compression by the transducer. The gain control is somewhat sluggish, and so it suffers both a slow onset, and loss of power at high temporal frequencies. Consequently, brief presentations and high temporal frequencies of drift and flicker are less protected from distortion, and show greater perceptual sharpening
The group law on the tropical Hesse pencil
We show that the addition of points on the tropical Hesse curve can be
realized via the intersection with a tropical line. Then the addition formula
for the tropical Hesse curve is reduced from those for the level-three theta
functions through the ultradiscretization procedure. A tropical analogue of the
Hessian group, the group of linear automorphisms acting on the Hesse pencil, is
also investigated; it is shown that the dihedral group of degree three is the
group of linear automorphisms acting on the tropical Hesse pencil.Comment: 17 pages, 1 figure, submitted to Special Issue of the Journal
Mathematics and Computers in Simulation on "Nonlinear Waves: Computation and
Theory
Keratin 5 knockout mice reveal plasticity of keratin expression in the corneal epithelium
We have recently demonstrated that the keratin K3 gene, which is active in the suprabasal human corneal epithelium, is missing in the genome of the mouse. We show that a normal K3 gene exists in a wide variety of mammals while in rodents the gene is converted to a pseudogene with a very strong sequence drift. The availability of K5(-/-) mice provides a unique opportunity to investigate type-specific keratin function during corneal differentiation in the absence of both K5 and K3. Here, we report that the deletion of K5, which in wild-type mice forms a cytoskeleton with K12, does neither cause keratin aggregation nor cytolysis in the cornea. This is due to the induction of K4 in corneal epithelial cells, normally restricted to corneal stem stem cells residing in the limbus. Using a combination of antibodies and RT-PCR, we identified additional keratins expressed in the mouse cornea including K23 which was previously thought to be specific for pancreatic carcinomas. This reflects an unexpected complexity of keratin expression in the cornea. Our data suggest that in the absence of mechanical stress, corneal differentiation does not depend on distinct keratin pairs, supporting a concept of functional redundancy, at least for certain keratins
Model-based Aeroservoelastic Design and Load Alleviation of Large Wind Turbine Blades
This paper presents an aeroservoelastic modeling approach for dynamic load alleviation
in large wind turbines with trailing-edge aerodynamic surfaces. The tower, potentially on a
moving base, and the rotating blades are modeled using geometrically non-linear composite
beams, which are linearized around reference conditions with arbitrarily-large structural
displacements. Time-domain aerodynamics are given by a linearized 3-D unsteady vortexlattice
method and the resulting dynamic aeroelastic model is written in a state-space
formulation suitable for model reductions and control synthesis. A linear model of a single
blade is used to design a Linear-Quadratic-Gaussian regulator on its root-bending moments,
which is finally shown to provide load reductions of about 20% in closed-loop on the full
wind turbine non-linear aeroelastic model
Patchy Reconnection in a Y-Type Current Sheet
We study the evolution of the magnetic field in a Y-type current sheet
subject to a brief, localized magnetic reconnection event. The reconnection
produces up- and down-flowing reconnected flux tubes which rapidly decelerate
when they hit the Y-lines and underlying magnetic arcade loops at the ends of
the current sheet. This localized reconnection outflow followed by a rapid
deceleration reproduces the observed behavior of post-CME downflowing coronal
voids. These simulations support the hypothesis that these observed coronal
downflows are the retraction of magnetic fields reconnected in localized
patches in the high corona.Comment: 4 pages, 3 figure
Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations
The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail
The Seyfert-Starburst Connection in X-rays. II. Results and Implications
We present the results of X-ray imaging and spectroscopic analysis of a
sample of Seyfert 2 galaxies that contain starbursts, based on their optical
and UV characteristics. These composite galaxies exhibit extended, soft,
thermal X-ray emission, which we attribute to their starburst components.
Comparing their X-ray and far-infrared properties with ordinary Seyfert and
starburst galaxies, we identify the spectral characteristics of their various
intrinsic emission sources. The observed far-infrared emission of the composite
galaxies may be associated almost exclusively with star formation, rather than
the active nucleus. The ratio of the hard X-ray luminosity to the far-infrared
and [O III] 5007 luminosity distinguishes most of these composite galaxies from
``pure'' Seyfert 2 galaxies, while their total observed hard X-ray luminosity
distinguishes them from ``pure'' starbursts. The hard nuclear X-ray source is
generally heavily absorbed (N_H > 10^{23} cm^{-2}) in the composite galaxies.
Based on these results, we suggest that the interstellar medium of the nuclear
starburst is a significant source of absorption. The majority of the sample are
located in groups or are interacting with other galaxies, which may trigger the
starburst or allow rapid mass infall to the central black hole, or both. We
conclude that starbursts are energetically important in a significant fraction
of active galaxies, and starbursts and active galactic nuclei may be part of a
common evolutionary sequence.Comment: 16 pages including 8 figures and 5 tables; to appear in the ApJ, Mar.
10, 200
Low-Temperature Magnetoresistance of a Disordered Metal
A contribution to the magnetoresistance is observed at temperatures below 100 mK in bulk metallic Si: P that is unanticipated within theoretical analyses of localization. This contribution is positive, approximately independent of sample orientation, and varying roughly as the square root of the applied field. An analysis of Coulomb interactions including spin splitting is presented which, when combined with localization, describes the magnetoresistance
- …