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Abstract 
 

Blurred edges appear sharper in motion than when they are stationary.   We (Hammett, 

Georgeson & Gorea, 1998) proposed a model of this motion sharpening that invokes a local, non-

linear contrast transducer function. Response saturation in the transducer compresses or 'clips' the 

input spatial waveform, rendering the edges as sharper. To explain the increasing distortion of 

drifting edges at higher speeds, the degree of nonlinearity must increase with speed or temporal 

frequency.  A dynamic contrast gain control before the transducer can account for both the speed 

dependence and approximate contrast invariance of motion sharpening (Hammett et al, 2003, in 

press).  We show here that this model also predicts perceived sharpening of briefly flashed and 

flickering edges, and we show that the model can account fairly well for experimental data from 

all three modes of presentation (motion, flash and flicker).  At moderate durations and lower 

temporal frequencies the gain control attenuates the input signal, thus protecting it from later 

compression by the transducer. The gain control is somewhat sluggish, and so it suffers both a 

slow onset, and loss of power at high temporal frequencies. Consequently brief presentations and 

high temporal frequencies of drift and flicker are less protected from distortion, and show greater 

perceptual sharpening.  
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Introduction 

 

The fact of temporal integration in vision (eg. Barlow, 1958; Legge, 1978; Gorea & Tyler, 1986; 

Georgeson, 1987) leads one to expect that moving objects should appear more blurred than 

stationary ones. There is much psychophysical evidence for the existence of such motion blur 

(e.g. Burr, 1980; Pääkkönen & Morgan, 1994; Chen, Bedell & Ogmen, 1995).  However, blurred 

edges in motion appear sharper than their static analogues, rather than appearing even more 

blurred (Ramachandran et al, 1974; Bex, Edgar & Smith, 1994; Hammett & Bex, 1996, 

Hammett, 1997; Hammett, Georgeson & Gorea, 1998). It has also been observed that briefly 

flashed edges look sharper, even without motion (Galvin et al, 1999; Georgeson & Hammett, 

2002). Our aims in this paper are to test whether a third form of temporal modulation – 

counterphase flicker – also produces edge sharpening, and then to devise a plausible, dynamic 

computational model that may unify the results from these three types of experiment. 

 

A variety of explanations has been proposed to account for motion sharpening. One possibility is 

that the visual system invokes some 'default' assumption that edges in motion are sharp (e.g. Burr 

& Morgan, 1997). Temporal integration renders high spatial frequencies undetectable at fast 

speeds and so sharp and blurred edges will be indistinguishable; the system might then pre-

suppose that edges are sharp when there is no information to the contrary.  Hammett & Bex 

(1996) tested this possibility using an adaptation protocol. They reasoned that if sharpening was 

due to a default assumption of sharpness then reducing the sensitivity of the visual system to high 

spatial frequencies should have no effect (or possibly increase) motion sharpening. They found 

that adaptation to high spatial frequencies (a missing-fundamental square-wave grating) reduced 
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the magnitude of the motion sharpening effect.  Thus the results of adaptation experiments do not 

support a 'default' model of sharpening.  

 

An alternative explanation is that motion blur is compensated by the visual system (Anderson & 

Van Essen, 1987; Martin & Marshall, 1993).  This type of explanation invokes a scheme whereby 

information about the speed of the edge is used to compensate for motion induced blur.  

However, whilst these models may explain the relative lack of motion blur experienced by 

observers (e.g. Burr, 1980),  they do not predict a sharpening of moving edges.  Nor do they 

provide an explanation for the perceived sharpening of briefly flashed edges that are not moving 

(Galvin et al, 1999; Georgeson & Hammett, 2002). 

 

More recently Pääkkönen and Morgan (2001) have shown that a bi-phasic temporal impulse 

response of the visual system can, in principle, account for both motion blur and motion 

sharpening.  However, because the model is linear it cannot account for the motion sharpening 

observed for pure sinusoidal gratings (e.g. Bex et al, 1995, Hammett & Bex, 1996),  and because 

it depends on motion it cannot account for the sharpening of stationary, flashed edges.  
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Fig 1. A: the range of variation in luminance profiles of stimuli from square-wave to sinusoid.  The solid curve is a 

blur profile constructed by replacing the square-wave edges with sine-wave half-periods centred on the edges. Edge 

blur width is defined by this half-period, in min arc. B: Example of the sigmoidal transducer function defined by 

equation 1. C: How a blurred grating (solid curve) is sharpened (dashed curve) by the transducer shown in (B). D: 

layout of the two stimulus windows on the display screen; shown to scale for an edge width of 60 min arc (spatial 

frequency, 0.25 c/deg). 

 

In short,  we still lack a general explanation that is not defeated by one or other variant of the 

sharpening phenomenon. We offered an account of motion sharpening that assumes an early, 

speed-dependent non-linearity (Hammett, Georgeson & Gorea, 1998).   The model proposed that 

distortions in edge encoding are mediated by a non-linearity in the contrast response function 
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(Fig. 1B). In this model, the spatial response profile R(x) of the transducer output is a function of 

the local contrast C(x) of the input image:  

! 

R(x) =
Cx)

S + C(x)
,     (1) 

where C(x) = (L(x)-L0)/L0,  L(x) is the luminance profile and L0  is mean luminance. The 

saturation constant (S) controls the compressiveness of the transducer, and smaller values make it 

more compressive. The compressive contrast response function leads to a sharpening of blurred 

edge waveforms (Fig. 1C). 

 

 This idea offers a basis for motion sharpening but does not account for the near contrast-

invariance that we reported recently (Hammett et al, 2003), nor does it explain why or how the 

transducer becomes more compressive with increasing speed. To account for these factors, we 

extended the transducer model to incorporate a contrast gain control that precedes the transducer 

(Fig. 2). The model is fully described in another paper (Hammett et al, 2003) and so we only 

summarize it here; model equations are given in the Appendix. The gain control (Fig. 2) uses a 

pair of spatially even- and odd-symmetric filters to evaluate the contrast energy (R2) in the input 

image, averaged across a neighbourhood in space and time. The gain control signal G,  a simple 

linear function of R2, is then used to scale down the image signal amplitude (R1) before input to 

a static, compressive transducer. The broad purpose of the gain control would be to exploit the 

dynamic range of the transducer, but to prevent saturation of high contrast signals.  Because the 

filter f2 integrates across time, the filter responses R2 and the subsequent gain control signal (G) 

are attenuated at high temporal frequencies. This in turn means that the scaled signal amplitude 

(R3 = R1/G) – input to the transducer – is higher, and so suffers more compression and more 

sharpening, at faster speeds where G is lower.  
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Fig 2.   Block diagram of the transducer model, with dynamic contrast gain control (Hammett et al, 2003).   
 

By this qualitative argument, we might also expect the same logic to hold for fast flicker as well 

as fast movement. That is, flickering (counterphase) edges might look sharper at higher flicker 

rates. The purpose of this paper is to test experimentally whether this is so, and to establish 

whether the model (Fig. 2) can account for the observed effects of flicker and motion. We have 

also found that briefly presented edges appear sharper than edges presented for longer durations 

(Georgeson & Hammett, 2002), and so a third aim is to challenge the model further with these 

data on flashed edges, in search of a unified explanation.  

 

Method 

Apparatus and Stimuli 

Achromatic (greyscale) grating patterns were generated by a VSG2/3W (Cambridge Research 

Systems) graphics board with 14 bit resolution, and displayed on an Eizo 6600M greyscale 

monitor at a frame rate of 120 Hz.  The mean luminance was 31 cd m-2.   The display was gamma 

corrected (linearized) using internal look-up tables.      The stimuli were displayed in two 

windows, equidistant from a central dark fixation point.  The windows subtended 16 degrees 

(vertical) by 8 degrees (horizontal) and were separated horizontally by 2 degrees.  The viewing 

distance was 57 cm. 
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The stimuli were horizontal periodic gratings whose luminance profile could vary between sine-

wave and square-wave while the spatial period was held constant. To control the degree of blur, 

each edge of a square wave was replaced by half a cycle of a sine-wave centred on the edge (see 

Fig. 1A and Bex et al, 1995). Blur width was defined as the half-period of this sinusoidal profile, 

in min arc. Variations in blur width did not change the fundamental spatial frequency of the 

grating. 

 

The stimuli flickered (sinusoidal counterphase modulation of contrast) at a range of temporal 

frequencies (0 - 16 Hz).  The peak Michelson contrast of the patterns was always 0.3. 

 

Procedure 

Standard and test patterns of the same spatial frequency were presented simultaneously in the two 

windows, and the left or right position of the two patterns was randomised from trial to trial.  The 

patterns were presented for 500 ms with abrupt onset and offset. Between presentations, a 

homogeneous grey field of mean luminance was presented. The spatial phase of the standard and 

test patterns was randomised from presentation to presentation. The standard pattern was a 

flickering blurred square wave (0.25, 0.5 or 1 c/deg) whose edge blur width  (60, 30 or 15 min arc 

respectively) was constant in any session. At the beginning of each session the blur width  of the 

stationary test pattern was  randomised such that it was within +/-20% of the standard pattern.   

The blur width of the test pattern subsequently varied from trial to trial depending upon the 

subject's previous responses.  Its blur width was determined by a modified Pest procedure (Taylor 

and Creelman, 1967) set to converge on the 50% point of subjective equality (PSE).   The 

subjects' task was to indicate which of the two patterns appeared sharper by pressing a button.  

The test pattern was static and the standard pattern flickered at 0, 2, 4, 8 or 12 Hz. The "spatial 
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frequency doubling" phenomenon (Kelly 1966, 1981) occurs at lower spatial and higher temporal 

frequencies, and can make the task of judging edge blur difficult and ambiguous. Thus the 

highest flicker rate at which meaningful data could be collected was restricted to 12 Hz (1 c/deg), 

8 Hz (0.5 c/deg) or 4 Hz (0.25 c/deg).  Each session consisted of 40 trials for each temporal 

frequency. The 50% point of the resultant psychometric function was estimated by Probit 

analysis (Finney, 1971).   The PSE was taken to be the mean of four such estimates. The order of 

sessions was pseudo-random.   

 

In order to compare the effect of flicker and motion on perceived edge blur we conducted an 

auxiliary experiment that measured perceived sharpness for drifting stimuli.  The experiment was 

similar to that described above except that the stimuli drifted instead of flickering. The range of 

temporal frequencies tested was similar to the flicker experiment. The direction of drift (up or 

down) was randomised from trial to trial.  In all other respects, the procedure was as described 

above. 

 

Two subjects participated in the experiment, S.B. who was aware of the general purpose of the 

experiment, and a naive but well practised observer (D.S.).  Viewing was binocular and no head 

restraint was used.  The experiment was conducted in a semi-darkened room. 
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Fig 3. Blur matching results for two observers (different symbols ± 1 s.e.) for flickering (A,B,C), moving (D,E,F) 
and flashed (G,H,I) edges.  Edge widths were 15, 30, and 60 min arc, as shown for each column.  For the motion 
graphs (D,E,F) both the speed axis (below) and the temporal frequency axis (above) are appropriately scaled. Solid 
curves show predictions of the gain control model using parameters given in the appendix. Experimental blur 
matches (and model blur codes) are expressed as percentages of the baseline match (or code). Data in G,H,I  are re-
plotted from Georgeson & Hammett (2002) for the same edge widths (15, 30, 60 min) as above, but in this case the 
gratings were pure sine-waves without the luminance plateau shown in Fig. 1A.  
 

Results 

Psychophysics 

Fig 3 (top two rows) shows the results for the two observers for both flickering and moving 

stimuli. For each speed or temporal frequency, mean blur match (B) for a given observer was 

expressed as a percentage (P) of the baseline blur match (B0) made at 0 Hz or 0 deg/sec: P = 

100*B/B0.  Thus in fig. 3 matches below 100% represent perceived sharpening of edges. 



 11 

Sharpening was  clearly observed for flickering stimuli (Fig. 3A,B,C) and it increased with 

temporal frequency, but the sharpening effect was  consistently greater for moving stimuli (Fig. 

3D,E,F) at corresponding temporal frequencies. The percentage sharpening can be expressed as 

(100-P), and these values are plotted in Fig. 4, to compare the sharpening for flicker and for 

motion at corresponding temporal frequencies. Flicker sharpening was around half, or less than 

half, the motion sharpening observed at the same temporal frequency.  
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Fig 4. Data re-plotted from Fig. 3 A,B to compare the percentage sharpening induced by motion and by flicker at 
corresponding temporal frequencies for observers SB (filled symbols) and DS (open symbols).   Lines of slope 1 
(solid) and 0.5 (dashed) are shown. 
 
Modelling 

How well can the model of Fig. 2, with a dynamic contrast gain control followed by a static, 

compressive transducer, account for these results?  Model predictions were derived for the 

spatiotemporal stimuli used here, and by Georgeson & Hammett (2002). For each stimulus the 

final edge blur code produced by the model was expressed as a percentage of the baseline code, 

as was done with the experimental blur matches. Solid curves in Fig. 3 show the predictions of 

the model with parameter values given in Table 1. Overall, the model captures the phenomena 

fairly well. The magnitude of flicker sharpening, and its temporal dependence (Fig 3A,B,C) are 

well described. For motion sharpening (Fig 3D,E,F), the model fit with these parameters was not 
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quite so good. Although the trend with increasing speed was fairly well described,  the model did 

not predict the greater sharpening observed for motion than for flicker, especially with the 60 min 

edge width (Fig. 3F).  

 

Fig 5. Worked example of the gain control model (Fig. 2) for a 48 ms flashed grating with edge width = 30’ (period 
60'). Model parameters given in Table 1. Each pane shows a space-time image of the response at a given stage 
(horizontal axis is time), along with graphs of spatial (X) and temporal (T) profiles taken at the positions marked by 
black lines in the space-time image. X-range is 240 min arc, T-range is 375 ms. Large early spike in the response R3 
reflects delay in the gain control signal (where G is briefly low) but because of saturation this spike is not so 
prominent in the transduced signal, R4. Final coding of edge blur operates on the R4 signal, as described in the text. 
Final pane (right) shows the raw blur code b(t) (upper graph) and the contrast-weighted blur code b(t).w(t)/max(w) 
(lower graph). The final blur estimate B is the weighted average of b(t), and is compared with the baseline estimate 
(B0) obtained from a 500 ms presentation. This percentage (79%) implies that 21% sharpening is predicted for this 
stimulus condition. 
 

Importantly, however, the model did give a good account of the sharpening observed for flashed 

gratings (Fig. 3G,H,I). These data represent the perceived blur of edges that were shown for 

durations of 8 to 500 ms and matched by a standard edge shown for 500 ms, re-plotted from 

Georgeson & Hammett (2002). The edge widths chosen for re-analysis were the same as tested 

here (15, 30, 60 min), but the gratings were pure sine-waves without the luminance plateau 

shown in Fig. 1A. In all cases we simulated the space-time images appropriate for each 
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experiment.  The magnitude of sharpening and the trend for greater sharpening at shorter 

durations are well described by the model. 

 

Why does the model predict edge sharpening for flashed and flickering gratings? Figs. 5-7 give 

some insight by illustrating the space-time distributions of response at each stage of processing.  

We begin with the simpler example of a sine-wave grating flashed for 48 ms (Fig. 5).  The even 

and odd spatial filters give sine- and cosine-phase responses respectively, and so the energy 

image is spatially uniform [because sin2() + cos2() = 1]. The energy (R2) rises and falls with flash 

onset and offset, but is smoothed and delayed by the low-pass temporal filtering action of f2.  

This delay is crucial to understanding the effect of duration. For a short time, the image signal 

(R3) passes to the transducer at high amplitude before the gain signal G has had time to damp it 

down, and so it suffers strong compression and sharpening. Notice how the blur code (fig 5, right, 

upper graph) begins at a low (sharp) value but then rises as G takes control. Our model supposes 

that the final blur code B is a weighted average of the blur codes b(t) evoked over time, and we 

used the magnitude |R1(t)| as a suitable set of weights w(t). It is reasonable that values of b(t) 

should contribute little to the final blur estimate B at times when stimulus contrast is near  zero, 

and since the weights w(t) closely follow the temporal envelope of stimulus contrast they achieve 

that goal. Note how a large plateau in the raw blur code (fig 5, right, upper graph) disppears when 

the weights are applied (fig 5, right, lower graph).  Hence the final blur code is given by: 

B=
w (t ).b( t )!

w( t )!

. 

B is sharper when duration is short, but gradually returns towards a larger (more veridical) value 

at longer durations as the early sharpening is outweighed by later, larger values of blur b(t).  

Clearly the magnitude of sharpening and the way it varies with duration will depend critically on 

the interaction of several factors, determined by the choice of parameter values for the gain 
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control and the transducer. We chose values (see Appendix) that gave a good fit overall to the 

data of Fig. 3, and differed in only one notable respect from those of Hammett et al (2003) 

(namely, reduction of τ2, see Appendix for a justification). We emphasize that it is far from trivial 

that a good fit is possible at all. 

 

Fig 6. Similar to Fig. 5,  but for  4 Hz counterphase flicker, with edge width = 30’ (period 120').  
 

Figs. 6 and 7 illustrate in a similar way the model responses to counterphase flicker at 4 Hz and 8 

Hz. Because the grating is not a pure sine-wave, the bandpass spatial filter responses are more 

complex, showing a strong response to the first and third spatial harmonics. Following spatial 

smoothing, the energy image R2 still shows some spatial modulation, and 100% temporal 

modulation driven by the counterphase flicker. Thus the gain G modulates strongly at 8 or 16 Hz 

(ie. twice the flicker rate). The gain modulation and contrast modulation interact to determine the 

moment-by-moment amplitude of input (R3) to the transducer, and the consequent variation in 

blur code b(t).  In these two examples, the latter has an almost sawtooth variation at 8 or 16 Hz. 

The extremes of this variation, however, receive little weight because they occur at times when 
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contrast [and hence the weights w(t)] are low (Figs. 6 and 7, right pane, lower graph). After the 

weighted averaging the net effect at 4 Hz (Fig. 6) is a modest  (12%) sharpening of the final code 

B, in comparison with the baseline (0Hz) code B0, as plotted in fig 3B. At 8 Hz, the peak gain G 

is further attenuated and the net sharpening effect is larger – around 28% (Fig. 7). 

 

Fig 7. Similar to Fig. 6,  but for  8 Hz counterphase flicker, again with edge width = 30’ (period 120').  
 

Discussion 

This study has shown that flickering blurred edges do appear sharper than stationary ones, and 

that the sharpening effect for flicker is smaller than for moving edges (Fig. 4). A model 

consisting of a static, compressive, local contrast response function, preceded by a dynamic, 

divisive gain control with a somewhat sluggish temporal response gives a good overall account of 

the sharpening effects for flash, flicker and motion (Fig. 3). The model also predicts contrast-

invariant sharpening, as reported in detail by Hammett et  al (2003). In its present form the model 

was not able to capture the greater effect for motion compared with flicker. Nevertheless, its 

overall success gives us a useful framework for understanding these dynamic distortions of edge 
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coding.  By contrast, no previous proposal (see Introduction) comes close to accounting for the 

effects of flash, flicker and motion, for sine-wave and non-sine-wave profiles, at a wide range of 

contrasts, blurs, temporal frequencies  and durations.   

 

Although it is conceptually quite simple, the model implies that the spatial and dynamic effects 

underlying sharpening can be quite elaborate. The quantitative predictions depend not only on the 

gain control parameters but also upon the model adopted for blur coding, and the manner in 

which the time-varying blur code is aggregated to return a single judgement of blur. We adopted 

a parameter-free model for blur that has proved very successful on a wide variety of stationary 

images (Georgeson, 2001; Barbieri-Hesse & Georgeson, 2002), and we chose a very simple form 

of weighted averaging to derive the final blur estimate.  

 

Neural basis 

The psychophysical experiments give no direct evidence about the possible site(s) for these 

processes in the visual nervous system, but our best guess is that the gain control and transducer 

mechanisms are retinal, while the multi-scale blur coding process is cortical. Studies of Y cells in 

the cat retina (eg. Shapley & Victor, 1978, 1979) and M-cells in the primate retina (Benardete & 

Kaplan, 1999) have revealed that, for stimulus temporal frequencies up to about 16 Hz, response 

gain is scaled down markedly with increasing contrast – an effect attributed to the presence of a 

dynamic contrast gain control mechanism in the retina. M-cells are subject to this gain control, 

but P-cells appear not to be (Benardete, Kaplan & Knight, 1992). Accounts of contrast gain 

control in the retina have often been expressed as feedback networks (eg. Shapley & Victor, 

1981; Berry et al, 1999), but for simplicity and stability we used a feed-forward control signal in 

our model. The structure of our model was partly inspired by the work of Wilson (1997) who 
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constructed a broader and more complex account of retinal function but which includes a divisive 

gain control prior to a saturating nonlinearity at the ganglion cell level. Thus it is tempting to 

assign our gain control and transducer to the retina, but we should be cautious. The increasing 

weight of evidence for additional gain  controls at multiple cortical sites (eg. V1 and MT; see 

Heeger, 1992; Simoncelli & Heeger, 1998; Schwartz & Simoncelli, 2001) means that our gain 

control might be cortical, or might represent the net effect of gain controls at several levels of the 

visual nervous system. Clearly there are many possble variations on this sort of model, and we 

make no claim for uniqueness; rather we have shown that a model of this general kind is capable 

of accounting for the variety of dynamic edge sharpening phenomena observed. 

 

 

§§§§§§§§§§§§§§§§§§§§§§§§§§§§§ 
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Figure Legends 

Fig 1. A: the range of variation in luminance profiles of stimuli from square-wave to sinusoid.  

The solid curve is a blur profile constructed by replacing the square-wave edges with sine-wave 

half-periods centred on the edges. Edge blur width is defined by this half-period, in min arc. B: 

Example of the sigmoidal transducer function defined by equation 1. C: How a blurred grating 

(solid curve) is sharpened (dashed curve) by the transducer shown in (B). D: layout of the two 

stimulus windows on the display screen; shown to scale for an edge width of 60 min arc (spatial 

frequency, 0.25 c/deg). 

 

Fig 2.   Block diagram of the transducer model, with dynamic contrast gain control (Hammett et 

al, 2003).   

 

Fig 3. Blur matching results for two observers (different symbols ± 1 s.e.) for flickering (A,B,C), 

moving (D,E,F) and flashed (G,H,I) edges.  Edge widths were 15, 30, and 60 min arc, as shown 

for each column.  For the motion graphs (D,E,F) both the speed axis (below) and the temporal 

frequency axis (above) are appropriately scaled. Solid curves show predictions of the gain control 

model using parameters given in the appendix. Experimental blur matches (and model blur 

codes) are expressed as percentages of the baseline match (or code). Data in G,H,I  are re-plotted 

from Georgeson & Hammett (2002) for the same edge widths (15, 30, 60 min) as above, but in 

this case the gratings were pure sine-waves without the luminance plateau shown in Fig. 1A.  

 

Fig 4. Data re-plotted from Fig. 3 A,B to compare the percentage sharpening induced by motion 

and by flicker at corresponding temporal frequencies for observers SB (filled symbols) and DS 

(open symbols).   Lines of slope 1 (solid) and 0.5 (dashed) are shown.  
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Fig 5. Worked example of the gain control model (Fig. 2) for a 48 ms flashed grating with edge 

width = 30’ (period 60'). Model parameters given in Table 1. Each pane shows a space-time 

image of the response at a given stage (horizontal axis is time), along with graphs of spatial (X) 

and temporal (T) profiles taken at the positions marked by black lines in the space-time image. X-

range is 240 min arc, T-range is 375 ms. Large early spike in the response R3 reflects delay in the 

gain control signal (where G is briefly low) but because of saturation this spike is not so 

prominent in the transduced signal, R4. Final coding of edge blur operates on the R4 signal, as 

described in the text. Final pane (right) shows the raw blur code b(t) (upper graph) and the 

contrast-weighted blur code b(t).w(t)/max(w) (lower graph). The final blur estimate B is the 

weighted average of b(t), and is compared with the baseline estimate (B0) obtained from a 500 ms 

presentation. This percentage (79%) implies that 21% sharpening is predicted for this stimulus 

condition. 

 

Fig 6. Similar to Fig. 5,  but for  4 Hz counterphase flicker, with edge width = 30’ (period 120').  

 

Fig 7. Similar to Fig. 6,  but for  8 Hz counterphase flicker, again with edge width = 30’ (period 

120').  
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Appendix – Model definition & parameters 

 

The model architecture sketched in Fig. 2 was implemented in Matlab by a set of equations 

defining each linear filter and nonlinear operation. The stimulus is defined by an array of 

luminance values L(x,t) distributed over space (x) and time (t) sampled at intervals of 1 min arc 

and 2 msec respectively, with mean L0. The input to the model was taken as the local pixel 

contrast C(x,t): 

! 

C(x,t) =
L(x,t) " L

0

L
0

. 

Linear spatio-temporal filters f1 and f2 were formed as the separable products of spatial and 

temporal kernels. The temporal kernel h was a simple, low-pass, n-stage exponential filter (with 

n=3):   

! 

h(t;") =
t

"
# 
$ 
% 
& 

n

exp
't

"
# 
$ 

% 
&  

and it was normalised to have unit area: 

! 

h'(t;") =
h(t," )

h( t,")#
. 

 The role of f1 was essentially to transmit the image data, with slight temporal smoothing, so its 

spatial kernel was just a unit impulse function δ(x) that has no filtering effect, thus: 

! 

f1(x,t;"
1
) = #(x).h'( t;"

1
) . 

The even-symmetric spatial kernel for f2e  was the second derivative g2 of a Gaussian, scaled to 

have unit peak amplitude in the Fourier domain: 

! 

g
2
(x;"

2
) =

"
2

2
e

2

# 

$ % 
& 

' ( 
)
*2g(x;"

2
)

*x2
 

where  

! 

g(x;" ) =
1

" 2#

$ 
% 
& 

' 
( 
) exp

*x2

2" 2

$ 

% 
& 

' 

( 
) . 

Multiplying the spatial and temporal kernels gave the spatio-temporal kernel: 

! 

f2 e(x,t;" 2
,#
2
) = g

2
(x;"

2
).h '(t;#

2
) . 

The corresponding odd-symmetric receptive field f2o was formed by taking the Hilbert transform 

H{} of the spatial kernel: 

! 

f2o(x,t;" 2
,#
2
) = H g

2
(x,"

2
){ }.h'( t;#

2
) . 
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Responses R1, R2 were computed as the convolution of the filter kernels with the input space-

time image C, implemented by multiplication in the Fourier domain. Edge artefacts were avoided 

by ensuring that an integer number of spatial cycles was present in the image. Thus:  

! 

R1= C(x,t)" f1(x,t)  

! 

R2e = C(x,t)" f 2e (x,t)  

! 

R2o = C(x,t)" f 2o (x,t) . 

The energy image R2(x,t) was computed as the quadratic sum of even and odd responses, 

smoothed by convolution with a unit-area Gaussian of scale σs: 

! 

R2= g(x;" s)# R2e
2

+ R2o
2 . 

Output of the gain-control signal processing is 

! 

G = a + k.R2 , and this is divided into the image 

data R1, to give R3 = R1/G. Finally the transducer has the form of a simple Naka-Rushton 

function: 

! 

R4 =
R3

S + R3
. 

This saturates at maximum (or minimum) output values of ±1 when the magnitude of R3 

(positive or negative) is large (see Fig. 1B), and it reaches half the saturated response when R3 = 

±S. If S is made smaller, R4 saturates at lower input levels and so produces more distortion of the 

input spatial waveform. Simple substitutions yield: 

! 

R4 =
R1

S .(a + k.R2) + R1
,  

implying that distortion should increase when the energy signal R2 is attenuated at higher speeds 

or temporal frequencies.  

 

Edge blur in the image R4 is evaluated moment-by-moment using the multi-scale blur-coding 

model outlined by Georgeson (2001) and Barbieri-Hesse & Georgeson (2002), to yield a time-

varying blur code b(t). Its application here is summarized by Hammett et al (2003). The final blur 

code B is a weighted average of the values b(t), obtained using weights w(t) given by the 

amplitude of R1(x,t) at time t.  Hence the final blur code is given by: 

B=
w (t ).b( t )!

w( t )!

. 
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Parameters for the present simulations are given in Table 1. They are consistent with those used 

by Hammett et al (2003) except that the time-constant τ1 was increased from 2 to 3 ms, and τ2 

was decreased from 40 to 8 ms. The latter may appear to be a large change, but is justified 

because our comparison of 3 presentation modes here constrains the choice of temporal 

parameters more strongly than before. In particular, the flash predictions were poor with such a 

large τ2. In the space domain, we suppose that the size of the spatial operators will scale with the 

spatial period of the grating (Table 1), to render the coding nearly scale invariant. In the previous 

study (Hammett et al, 2003), the spatial filter scale parameter σ2, and energy smoothing scale σs , 

followed the same rules but were constant because the spatial period of the grating was fixed at 

480 min.  

 

 

 

 

Table 1 – Parameters used in the simulation  

 
Mechanism Parameter Value 

Filter, f1 τ1 3 ms 
Filter, f2 σ2 (spatial period)/16 
 τ2 8 ms 
Energy smoother σs (spatial period)/8 
Gain constants a 0.002 
 k 3.26 
Transducer S 2 
Blur coding parameter-free 
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