69 research outputs found

    NGC 4654: polarized radio continuum emission as a diagnostic tool for a galaxy--cluster interaction

    Get PDF
    A recent comparison between deep VLA HI observations and dynamical models of the Virgo cluster spiral galaxy NGC 4654 has shown that only a model involving a combination of a tidal interaction and ram pressure can reproduce the data. Deep radio polarization studies, together with detailed MHD modeling, can independently verify those conclusions, that are based on HI observations and dynamical models. We performed deep polarized radio-continuum observations of the Virgo cluster spiral galaxy NGC 4654 with the Effelsberg 100m telescope at 8.35 GHz and the VLA at 4.85 GHz. Detailed 3D MHD simulations were made to determine the large-scale magnetic field and the emission distribution of the polarized radio continuum in the model, during the galaxy evolution within the cluster environment. This direct comparison between the observed and simulated polarized radio continuum emission corroborates the earlier results, that the galaxy had a recent rapid close encounter with NGC 4639 and is undergoing weak ram pressure by the intracluster medium. This combination of deep radio polarization studies and detailed MHD modeling thus gives us unique insight into the interactions of a galaxy with its cluster environment. It represents a diagnostic tool that is complementary to deep HI observations.Comment: Corrected galaxy name in captions of figures (1 & 2

    3D global simulations of a cosmic-ray-driven dynamo in dwarf galaxies

    Get PDF
    Star-forming dwarf galaxies can be seen as the local proxies of the high-redshift building blocks of more massive galaxies according to the current paradigm of the hierarchical galaxy formation. They are low-mass objects, and therefore their rotation speed is very low. Several galaxies are observed to show quite strong magnetic fields. These cases of strong ordered magnetic fields seem to correlate with a high, but not extremely high, star formation rate. We investigate whether these magnetic fields could be generated by the cosmic-ray-driven dynamo. The environment of a dwarf galaxy is unfavourable for the large-scale dynamo action because of the very slow rotation that is required to create the regular component of the magnetic field. We built a 3D global model of a dwarf galaxy that consists of two gravitational components: the stars and the dark-matter halo described by the purely phenomenological profile proposed previously. We solved a system of magnetohydrodynamic (MHD) equations that include an additional cosmic-ray component described by the fluid approximation. We found that the cosmic-ray-driven dynamo can amplify the magnetic field with an exponential growth rate. The ee-folding time is correlated with the initial rotation speed. The final mean value of the azimuthal flux for our models is of the order of few μ\muG and the system reaches its equipartition level. The results indicate that the cosmic-ray-driven dynamo is a process that can explain the magnetic fields in dwarf galaxies.Comment: 6 pages, 4 figures, accepted for publication in A&

    Cosmic-ray driven dynamo in the interstellar medium of irregular galaxies

    Get PDF
    Irregular galaxies are usually smaller and less massive than their spiral, S0, and elliptical counterparts. Radio observations indicate that a magnetic field is present in irregular galaxies whose value is similar to that in spiral galaxies. However, the conditions in the interstellar medium of an irregular galaxy are unfavorable for amplification of the magnetic field because of the slow rotation and low shearing rate. We investigate the cosmic-ray driven dynamo in the interstellar medium of an irregular galaxy. We study its efficiency under the conditions of slow rotation and weak shear. The star formation is also taken into account in our model and is parametrized by the frequency of explosions and modulations of activity. The numerical model includes a magnetohydrodynamical dynamo driven by cosmic rays that is injected into the interstellar medium by randomly exploding supernovae. In the model, we also include essential elements such as vertical gravity of the disk, differential rotation approximated by the shearing box, and resistivity leading to magnetic reconnection. We find that even slow galactic rotation with a low shearing rate amplifies the magnetic field, and that rapid rotation with a low value of the shear enhances the efficiency of the dynamo. Our simulations have shown that a high amount of magnetic energy leaves the simulation box becoming an efficient source of intergalactic magnetic fields.Comment: 9 pages, 6 figure

    Pre-peak ram pressure stripping in the Virgo cluster spiral galaxy NGC 4501

    Get PDF
    VIVA HI observations of the Virgo spiral galaxy NGC 4501 are presented. The HI disk is sharply truncated to the southwest, well within the stellar disk. A region of low surface-density gas, which is more extended than the main HI disk, is discovered northeast of the galaxy center. These data are compared to existing 6cm polarized radio continuum emission, Halpha, and optical broad band images. We observe a coincidence between the western HI and polarized emission edges, on the one hand, and a faint Halpha emission ridge, on the other. The polarized emission maxima are located within the gaps between the spiral arms and the faint Halpha ridge. Based on the comparison of these observations with a sample of dynamical simulations with different values for maximum ram pressure and different inclination angles between the disk and the orbital plane,we conclude that ram pressure stripping can account for the main observed characteristics. NGC 4501 is stripped nearly edge-on, is heading southwest, and is ~200-300 Myr before peak ram pressure, i.e. its closest approach to M87. The southwestern ridge of enhanced gas surface density and enhanced polarized radio-continuum emission is due to ram pressure compression. It is argued that the faint western Halpha emission ridge is induced by nearly edge-on ram pressure stripping. NGC 4501 represents an especially clear example of early stage ram pressure stripping of a large cluster-spiral galaxy.Comment: 22 pages, 25 figures, accepted for publication in A&

    The magnetic fields of large Virgo cluster spirals: Paper II

    Get PDF
    The Virgo cluster of galaxies provides excellent conditions for studying interactions of galaxies with the cluster environment. Both the high-velocity tidal interactions and effects of ram pressure stripping by the intracluster gas can be investigated in detail. We extend our systematic search for possible anomalies in the magnetic field structures of Virgo cluster spirals in order to characterize a variety of effects and attribute them to different disturbing agents. Six angularly large Virgo cluster spiral galaxies (NGC4192, NGC4302, NGC4303, NGC4321, NGC4388, and NGC4535) were targets of a sensitive total power and polarization study using the 100-m radio telescope in Effelsberg at 4.85GHz and 8.35GHz (except for NGC4388 observed only at 4.85GHz, and NGC4535 observed only at 8.35GHz). Magnetic field structures distorted to various extent are found in all galaxies. Three galaxies (NGC4302, NGC4303, and NGC4321) show some signs of possible tidal interactions, while NGC4388 and NGC4535 have very likely experienced strong ram-pressure and shearing effects, respectively, visible as distortions and asymmetries of polarized intensity distributions. As in our previous study, even strongly perturbed galaxies closely follow the radio-far-infrared correlation. In NGC4303 and NGC4321, we observe symmetric spiral patterns of the magnetic field and in NGC4535 an asymmetric pattern. Magnetic fields allow us to trace even weak interactions that are difficult to detect with other observations. Our results show that the degree of distortions of a galaxy is not a simple function of the distance to the cluster center but reflects also the history of its interactions. The angle between the velocity vector and the rotation vector of a galaxy may be a general parameter that describes the level of distortions of galactic magnetic fields.Comment: 12 pages, 18 figures, 2 tables. Accepted for publication in Astronomy and Astrophysic

    Large-scale radio continuum properties of 19 Virgo cluster galaxies The influence of tidal interactions, ram pressure stripping, and accreting gas envelopes

    Get PDF
    Deep scaled array VLA 20 and 6cm observations including polarization of 19 Virgo spirals are presented. This sample contains 6 galaxies with a global minimum of 20cm polarized emission at the receding side of the galactic disk and quadrupolar type large-scale magnetic fields. In the new sample no additional case of a ram-pressure stripped spiral galaxy with an asymmetric ridge of polarized radio continuum emission was found. In the absence of a close companion, a truncated HI disk, together with a ridge of polarized radio continuum emission at the outer edge of the HI disk, is a signpost of ram pressure stripping. 6 out of the 19 observed galaxies display asymmetric 6cm polarized emission distributions. Three galaxies belong to tidally interacting pairs, two galaxies host huge accreting HI envelopes, and one galaxy had a recent minor merger. Tidal interactions and accreting gas envelopes can lead to compression and shear motions which enhance the polarized radio continuum emission. In addition, galaxies with low average star formation rate per unit area have a low average degree of polarization. Shear or compression motions can enhance the degree of polarization. The average degree of polarization of tidally interacting galaxies is generally lower than expected for a given rotation velocity and star formation activity. This low average degree of polarization is at least partly due to the absence of polarized emission from the thin disk. Ram pressure stripping can decrease whereas tidal interactions most frequently decreases the average degree of polarization of Virgo spiral galaxies. We found that moderate active ram pressure stripping has no influence on the spectral index, but enhances the global radio continuum emission with respect to the FIR emission, while an accreting gas envelope can but not necessarily enhances the radio continuum emission with respect to the FIR emission.Comment: 37 pages, 26 figures, accepted for publication in A&

    A dynamical model for the heavily ram pressure stripped Virgo spiral galaxy NGC 4522

    Get PDF
    A dynamical model including ram pressure stripping is applied to the strongly HI deficient Virgo spiral galaxy NGC 4522. A carefully chosen model snapshot is compared with existing VLA HI observations. The model successfully reproduces the large-scale gas distribution and the velocity field. However it fails to reproduce the large observed HI linewidths in the extraplanar component, for which we give possible explanations. In a second step, we solve the induction equation on the velocity fields of the dynamical model and calculate the large scale magnetic field. Assuming a Gaussian distribution of relativistic electrons we obtain the distribution of polarized radio continuum emission which is also compared with our VLA observations at 6 cm. The observed maximum of the polarized radio continuum emission is successfully reproduced. Our model suggests that the ram pressure maximum occurred only ~50 Myr ago. Since NGC 4522 is located far away from the cluster center (~1 Mpc) where the intracluster medium density is too low to cause the observed stripping if the intracluster medium is static and smooth, two scenarios are envisaged: (i) the galaxy moves very rapidly within the intracluster medium and is not even bound to the cluster; in this case the galaxy has just passed the region of highest intracluster medium density; (ii) the intracluster medium is not static but moving due to the infall of the M49 group of galaxies. In this case the galaxy has just passed the region of highest intracluster medium velocity. This study shows the strength of combining high resolution HI and polarized radio continuum emission with detailed numerical modeling of the evolution of the gas and the large-scale magnetic field.Comment: 15 pages, 11 figures, accepted for publication in A&

    The magnetic fields of large Virgo Cluster spirals

    Get PDF
    Because of its proximity the Virgo Cluster is an excellent target for studying interactions of galaxies with the cluster environment. Both the high-velocity tidal interactions and effects of ram pressure stripping by the intracluster gas can be investigated. Optical and/or \ion{H}{i} observations do not always show effects of weak interactions between galaxies and their encounters with the cluster medium. For this reason we searched for possible anomalies in the magnetic field structure in Virgo Cluster spirals which could be attributed to perturbations in their gas distribution and kinematics. Five angularly large Virgo Cluster spiral galaxies (NGC 4501, NGC 4438, NGC 4535, NGC 4548 and NGC 4654) were the targets for a sensitive total power and polarization study using the 100-m radio telescope in Effelsberg at 4.85 GHz. For two objects polarization data at higher frequencies have been obtained allowing Faraday rotation analysis. Distorted magnetic field structures were identified in all galaxies. Interaction-induced magnetized outflows were found in NGC 4438 (due to nuclear activity) and NGC 4654 (a combination of tidal tails and ram pressure effects). Almost all objects (except the anaemic NGC 4548) exhibit distortions in polarized radio continuum attributable to influence of the ambient gas. For some galaxies they agree with observations of other species, but sometimes (NGC 4535) the magnetic field is the only tracer of the interaction with the cluster environment. The cluster environment clearly affects the evolution of the galaxies due to ram pressure and tidal effects. Magnetic fields provide a very long-lasting memory of past interactions. Therefore, they are a good tracer of weak interactions which are difficult to detect by other observations.Comment: 13 pages, 12 figure

    The characteristic polarized radio continuum distribution of cluster spiral galaxies

    Get PDF
    Deep observations of 6cm polarized radio continuum emission of 8 Virgo spiral galaxies are presented. All galaxies show strongly asymmetric distributions of polarized intensity with elongated ridges located in the outer galactic disk. Such features are not found in existing observations of polarized radio continuum emission of field spiral galaxies, where the distribution of 6cm polarized intensity is generally relatively symmetric and strongest in the interarm regions. We therefore conclude that most Virgo spiral galaxies and most probably the majority of cluster spiral galaxies show asymmetric distributions of polarized radio continuum emission due to their interaction with the cluster environment. The polarized continuum emission is sensitive to compression and shear motions in the plane of the sky and thus contains important information about velocity distortions caused by these interactions.Comment: 5 pages, 1 figure, A&A accepted as a lette
    corecore