115 research outputs found

    The pd3HΛK+pd\to ^3H_\Lambda K^+ reaction cross section

    Full text link
    The one- and two-step mechanisms of the pd3HΛK+pd\to ^3H_\Lambda K^+ reaction in the range of incident proton kinetic energy 1.13-3.0 GeV have been investigated. A remarkable peculiarity of the two-step mechanism which incorporates subprocesses ppdπ+pp\to d\pi ^+ and π+nK+Λ\pi^+n\to K^+\Lambda is the so called velocity matching providing the presence of all intermediate particles nearly to the on-mass-shell. The differential cross section has been calculated using a realistic model for the hypertritium 3HΛ^3H_\Lambda wave function. The maximum value of the cross section is estimated as \sim 1nb/sr. The contribution of the one-step mechanism with the elementary process pNNKΛpN\to NK\Lambda into the cross section has been found to be two - three orders of magnitude smaller in comparison with the two-step mechanism.Comment: 10 pages, Latex, 3 Postscript figure

    Evidence of kaon nuclear and Coulomb potential effects on soft K+ production from nuclei

    Get PDF
    The ratio of forward K+ production on copper, silver and gold targets to that on carbon has been measured at proton beam energies between 1.5 and 2.3 GeV as a function of the kaon momentum p_K using the ANKE spectrometer at COSY-Juelich. The strong suppression in the ratios observed for p_K<200-250 MeV/c can be ascribed to a combination of Coulomb and nuclear repulsion in the K+A system. This opens a new way to investigate the interaction of K+-mesons in the nuclear medium. Our data are consistent with a K+A nuclear potential of V_K~20 MeV at low kaon momenta and normal nuclear density. Given the sensitivity of the data to the kaon potential, the current experimental precision might allow one to determine V_K to better than 3 MeV.Comment: 9 pages, 3 figures; changed conten

    Phenomenological analysis of K+ meson production in proton-nucleus collisions

    Get PDF
    Total and differential cross sections from literature, on the production of K+ mesons in pA interactions at projectile energies between T=0.8 and 2.9 GeV, covering the transition across the free nucleon-nucleon threshold at 1.58 GeV, have been investigated. From the target-mass dependence of the production cross sections no evidence for the expected change of the dominant reaction mechanism from two-step to direct kaon production was found. At T=1.0 GeV the A dependences of the total cross sections and of the most recent data from COSY-Juelich, differential cross sections measured under forward angles, are strongly different. The invariant K+ production cross sections show an overall exponential scaling behavior with the squared four-momentum transfer between the beam proton and the produced K+ meson for t< -0.05 GeV^2 independent of the beam energy and emission angle. The data from COSY-Juelich reveal a strongly different t dependence in the region of t>0 GeV^2. Further data at forward angles and different beam energies should be taken in order to explore this region of kinematically extreme conditions.Comment: 9 Pages, 11 Figure

    Forward K+ production in subthreshold pA collisions at 1.0 GeV

    Get PDF
    K+ meson production in pA (A = C, Cu, Au) collisions has been studied using the ANKE spectrometer at an internal target position of the COSY-Juelich accelerator. The complete momentum spectrum of kaons emitted at forward angles, theta < 12 degrees, has been measured for a beam energy of T(p)=1.0 GeV, far below the free NN threshold of 1.58 GeV. The spectrum does not follow a thermal distribution at low kaon momenta and the larger momenta reflect a high degree of collectivity in the target nucleus.Comment: 4 pages, 3 figure

    Non-canonical Hedgehog signaling mediates profibrotic hematopoiesis-stroma crosstalk in myeloproliferative neoplasms

    Get PDF
    The role of hematopoietic Hedgehog signaling in myeloproliferative neoplasms (MPNs) remains incompletely understood despite data suggesting that Hedgehog (Hh) pathway inhibitors have therapeutic activity in patients. We aim to systematically interrogate the role of canonical vs. non-canonical Hh signaling in MPNs. We show that Gli1 protein levels in patient peripheral blood mononuclear cells (PBMCs) mark fibrotic progression and that, in murine MPN models, absence of hematopoietic Gli1, but not Gli2 or Smo, significantly reduces MPN phenotype and fibrosis, indicating that GLI1 in the MPN clone can be activated in a non-canonical fashion. Additionally, we establish that hematopoietic Gli1 has a significant effect on stromal cells, mediated through a druggable MIF-CD74 axis. These data highlight the complex interplay between alterations in the MPN clone and activation of stromal cells and indicate that Gli1 represents a promising therapeutic target in MPNs, particularly that Hh signaling is dispensable for normal hematopoiesis.</p

    International Conference on Physics with GeV Particle Beams

    No full text

    Nuclear Structure of the Zirconium Region

    No full text
    corecore