1,456 research outputs found

    Schr\"odinger Deformations of AdS_3 x S^3

    Full text link
    We study Schr\"odinger invariant deformations of the AdS_3 x S^3 x T^4 (or K3) solution of IIB supergravity and find a large class of solutions with integer and half-integer dynamical exponents. We analyze the supersymmetries preserved by our solutions and find an infinite number of solutions with four supersymmetries. We study the solutions holographically and find that the dual D1-D5 (or F1-NS5) CFT is deformed by irrelevant operators of spin one and two.Comment: 23 page

    Fermions and Type IIB Supergravity On Squashed Sasaki-Einstein Manifolds

    Full text link
    We discuss the dimensional reduction of fermionic modes in a recently found class of consistent truncations of type IIB supergravity compactified on squashed five-dimensional Sasaki-Einstein manifolds. We derive the lower dimensional equations of motion and effective action, and comment on the supersymmetry of the resulting theory, which is consistent with N=4 gauged supergravity in d=5d=5, coupled to two vector multiplets. We compute fermion masses by linearizing around two AdS5AdS_{5} vacua of the theory: one that breaks N=4 down to N=2 spontaneously, and a second one which preserves no supersymmetries. The truncations under consideration are noteworthy in that they retain massive modes which are charged under a U(1) subgroup of the RR-symmetry, a feature that makes them interesting for applications to condensed matter phenomena via gauge/gravity duality. In this light, as an application of our general results we exhibit the coupling of the fermions to the type IIB holographic superconductor, and find a consistent further truncation of the fermion sector that retains a single spin-1/2 mode.Comment: 43 pages, 2 figures, PDFLaTeX; v2: added references, typos corrected, minor change

    Enhanced Supersymmetry of Nonrelativistic ABJM Theory

    Full text link
    We study the supersymmetry enhancement of nonrelativistic limits of the ABJM theory for Chern-Simons level k=1,2k=1,2. The special attention is paid to the nonrelativistic limit (known as `PAAP' case) containing both particles and antiparticles. Using supersymmetry transformations generated by the monopole operators, we find additional 2 kinematical, 2 dynamical, and 2 conformal supercharges for this case. Combining with the original 8 kinematical supercharges, the total number of supercharges becomes maximal: 14 supercharges, like in the well-known PPPP limit. We obtain the corresponding super Schr\"odinger algebra which appears to be isomorphic to the one of the PPPP case. We also discuss the role of monopole operators in supersymmetry enhancement and partial breaking of supersymmetry in nonrelativistic limit of the ABJM theory.Comment: 22 pages, references added, version to appear in JHE

    D-brane Charges in Gravitational Duals of 2+1 Dimensional Gauge Theories and Duality Cascades

    Full text link
    We perform a systematic analysis of the D-brane charges associated with string theory realizations of d=3 gauge theories, focusing on the examples of the N=4 supersymmetric U(N)xU(N+M) Yang-Mills theory and the N=3 supersymmetric U(N)xU(N+M) Yang-Mills-Chern-Simons theory. We use both the brane construction of these theories and their dual string theory backgrounds in the supergravity approximation. In the N=4 case we generalize the previously known gravitational duals to arbitrary values of the gauge couplings, and present a precise mapping between the gravity and field theory parameters. In the N=3 case, which (for some values of N and M) flows to an N=6 supersymmetric Chern-Simons-matter theory in the IR, we argue that the careful analysis of the charges leads to a shift in the value of the B-field in the IR solution by 1/2, in units where its periodicity is one, compared to previous claims. We also suggest that the N=3 theories may exhibit, for some values of N and M, duality cascades similar to those of the Klebanov-Strassler theory.Comment: 47 pages, 9 figures; minor changes, references adde

    Branes and fluxes in special holonomy manifolds and cascading field theories

    Full text link
    We conduct a study of holographic RG flows whose UV is a theory in 2+1 dimensions decoupled from gravity, and the IR is the N=6,8 superconformal fixed point of ABJM. The solutions we consider are constructed by warping the M-theory background whose eight spatial dimensions are manifolds of special holonomies sp(1) times sp(1) and spin(7). Our main example for the spin(7) holonomy manifold is the A8 geometry originally constructed by Cvetic, Gibbons, Lu, and Pope. On the gravity side, our constructions generalize the earlier construction of RG flow where the UV was N=3 Yang-Mills-Chern-Simons matter system and are simpler in a number of ways. Through careful consideration of Page, Maxwell, and brane charges, we identify the discrete and continuous parameters characterizing each system. We then determine the range of the discrete data, corresponding to the flux/rank for which the supersymmetry is unbroken, and estimate the dynamical supersymmetry breaking scale as a function of these data. We then point out the similarity between the physics of supersymmetry breaking between our system and the system considered by Maldacena and Nastase. We also describe the condition for unbroken supersymmetry on class of construction based on a different class of spin(7) manifolds known as B8 spaces whose IR is different from that of ABJM and exhibit some interesting features.Comment: 51 pages, 12 figures. Update in quantization of G4 on B8 in equations (5.12) and (5.13

    Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant

    Full text link
    We show that the ABJM theory, which is an N=6 superconformal U(N)*U(N) Chern-Simons gauge theory, can be studied for arbitrary N at arbitrary coupling constant by applying a simple Monte Carlo method to the matrix model that can be derived from the theory by using the localization technique. This opens up the possibility of probing the quantum aspects of M-theory and testing the AdS_4/CFT_3 duality at the quantum level. Here we calculate the free energy, and confirm the N^{3/2} scaling in the M-theory limit predicted from the gravity side. We also find that our results nicely interpolate the analytical formulae proposed previously in the M-theory and type IIA regimes. Furthermore, we show that some results obtained by the Fermi gas approach can be clearly understood from the constant map contribution obtained by the genus expansion. The method can be easily generalized to the calculations of BPS operators and to other theories that reduce to matrix models.Comment: 35 pages, 20 figures; reference added. The simulation code is available upon request to [email protected]

    On thermodynamics of N=6 superconformal Chern-Simons theory

    Full text link
    We study thermodynamics of N=6 superconformal Chern-Simons theory by computing quantum corrections to the free energy. We find that in weakly coupled ABJM theory on R(2) x S(1), the leading correction is non-analytic in the 't Hooft coupling lambda, and is approximately of order lambda^2 log(lambda)^3. The free energy is expressed in terms of the scalar thermal mass m, which is generated by screening effects. We show that this mass vanishes to 1-loop order. We then go on to 2-loop order where we find a finite and positive mass squared m^2. We discuss differences in the calculation between Coulomb and Lorentz gauge. Our results indicate that the free energy is a monotonic function in lambda which interpolates smoothly to the N^(3/2) behaviour at strong coupling.Comment: 29 pages. v2: references added. v3: minor changes, references added, published versio

    How variation in head pitch could affect image matching algorithms for ant navigation

    Get PDF
    Desert ants are a model system for animal navigation, using visual memory to follow long routes across both sparse and cluttered environments. Most accounts of this behaviour assume retinotopic image matching, e.g. recovering heading direction by finding a minimum in the image difference function as the viewpoint rotates. But most models neglect the potential image distortion that could result from unstable head motion. We report that for ants running across a short section of natural substrate, the head pitch varies substantially: by over 20 degrees with no load; and 60 degrees when carrying a large food item. There is no evidence of head stabilisation. Using a realistic simulation of the ant’s visual world, we demonstrate that this range of head pitch significantly degrades image matching. The effect of pitch variation can be ameliorated by a memory bank of densely sampled along a route so that an image sufficiently similar in pitch and location is available for comparison. However, with large pitch disturbance, inappropriate memories sampled at distant locations are often recalled and navigation along a route can be adversely affected. Ignoring images obtained at extreme pitches, or averaging images over several pitches, does not significantly improve performance

    Forward-Backward Asymmetry in Top Quark Production in ppbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    Reconstructable final state kinematics and charge assignment in the reaction ppbar->ttbar allows tests of discrete strong interaction symmetries at high energy. We define frame dependent forward-backward asymmetries for the outgoing top quark in both the ppbar and ttbar rest frames, correct for experimental distortions, and derive values at the parton-level. Using 1.9/fb of ppbar collisions at sqrt{s}=1.96 TeV recorded with the CDF II detector at the Fermilab Tevatron, we measure forward-backward top quark production asymmetries in the ppbar and ttbar rest frames of A_{FB,pp} = 0.17 +- 0.08 and A_{FB,tt} = 0.24 +- 0.14.Comment: 7 pages, 2 figures, submitted to Phys.Rev.Lett, corrected references and change of tex
    corecore