97 research outputs found

    A Novel Mouse Synaptonemal Complex Protein Is Essential for Loading of Central Element Proteins, Recombination, and Fertility

    Get PDF
    The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE–specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE–specific proteins, which in turn would promote synapsis between homologous chromosomes

    The Ubiquitin Ligase Ubr2, a Recognition E3 Component of the N-End Rule Pathway, Stabilizes Tex19.1 during Spermatogenesis

    Get PDF
    Ubiquitin E3 ligases target their substrates for ubiquitination, leading to proteasome-mediated degradation or altered biochemical properties. The ubiquitin ligase Ubr2, a recognition E3 component of the N-end rule proteolytic pathway, recognizes proteins with N-terminal destabilizing residues and plays an important role in spermatogenesis. Tex19.1 (also known as Tex19) has been previously identified as a germ cell-specific protein in mouse testis. Here we report that Tex19.1 forms a stable protein complex with Ubr2 in mouse testes. The binding of Tex19.1 to Ubr2 is independent of the second position cysteine of Tex19.1, a putative target for arginylation by the N-end rule pathway R-transferase. The Tex19.1-null mouse mutant phenocopies the Ubr2-deficient mutant in three aspects: heterogeneity of spermatogenic defects, meiotic chromosomal asynapsis, and embryonic lethality preferentially affecting females. In Ubr2-deficient germ cells, Tex19.1 is transcribed, but Tex19.1 protein is absent. Our results suggest that the binding of Ubr2 to Tex19.1 metabolically stabilizes Tex19.1 during spermatogenesis, revealing a new function for Ubr2 outside the conventional N-end rule pathway

    Smoking reduces surfactant protein D and phospholipids in patients with and without chronic obstructive pulmonary disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary surfactant D (SP-D) has important regulatory functions for innate immunity and has been implicated as a biomarker for chronic obstructive pulmonary disease (COPD). We hypothesized that COPD patients would have reduced bronchoalveolar lavage (BAL) fluid SP-D levels compared to healthy smoking and non-smoking controls.</p> <p>Methods</p> <p>BAL SP-D and phospholipids were quantified and corrected for dilution in 110 subjects (65 healthy never smokers, 23 smokers with normal spirometry, and 22 smokers with COPD).</p> <p>Results</p> <p>BAL SP-D was highest in never smokers (mean 51.9 μg/mL ± 7.1 μg/mL standard error) compared to both smokers with normal spirometry (16.0 μg/mL ± 11.8 μg/mL) and subjects with COPD (19.1 μg/mL ± 12.9 μg/mL; P < 0.0001). Among smokers with COPD, BAL SP-D correlated significantly with FEV<sub>1</sub>% predicted (R = 0.43; P < 0.05); however, the strongest predictor of BAL SP-D was smoking status. BAL SP-D levels were lowest in current smokers (12.8 μg/mL ± 11.0 μg/mL), intermediate in former smokers (25.2 μg/mL ± 14.2 μg/mL; P < 0.008), and highest in never smokers. BAL phospholipids were also lowest in current smokers (6.5 nmol ± 1.5 nmol), intermediate in former smokers (13.1 nmol ± 2.1 nmol), and highest in never smokers (14.8 nmol ± 1.1 nmol; P < 0.0001).</p> <p>Conclusions</p> <p>These data suggest that smokers, and especially current smokers, exhibit significantly reduced BAL SP-D and phospholipids compared to nonsmokers. Our findings may help better explain the mechanism that leads to the rapid progression of disease and increased incidence of infection in smokers.</p

    corona Is Required for Higher-Order Assembly of Transverse Filaments into Full-Length Synaptonemal Complex in Drosophila Oocytes

    Get PDF
    The synaptonemal complex (SC) is an intricate structure that forms between homologous chromosomes early during the meiotic prophase, where it mediates homolog pairing interactions and promotes the formation of genetic exchanges. In Drosophila melanogaster, C(3)G protein forms the transverse filaments (TFs) of the SC. The N termini of C(3)G homodimers localize to the Central Element (CE) of the SC, while the C-termini of C(3)G connect the TFs to the chromosomes via associations with the axial elements/lateral elements (AEs/LEs) of the SC. Here, we show that the Drosophila protein Corona (CONA) co-localizes with C(3)G in a mutually dependent fashion and is required for the polymerization of C(3)G into mature thread-like structures, in the context both of paired homologous chromosomes and of C(3)G polycomplexes that lack AEs/LEs. Although AEs assemble in cona oocytes, they exhibit defects that are characteristic of c(3)G mutant oocytes, including failure of AE alignment and synapsis. These results demonstrate that CONA, which does not contain a coiled coil domain, is required for the stable ‘zippering’ of TFs to form the central region of the Drosophila SC. We speculate that CONA's role in SC formation may be similar to that of the mammalian CE proteins SYCE2 and TEX12. However, the observation that AE alignment and pairing occurs in Tex12 and Syce2 mutant meiocytes but not in cona oocytes suggests that the SC plays a more critical role in the stable association of homologs in Drosophila than it does in mammalian cells

    Telemedizinisches Betreuungskonzept für geriatrische Patienten mit einer Mangelernährung

    No full text
    • …
    corecore