764 research outputs found

    Sexual selection's impacts on ecological specialization: an experimental test

    Get PDF
    In many species, individuals specialize on different resources, thereby reducing competition. Such ecological specialization can promote the evolution of alternative ecomorphs—distinct phenotypes adapted for particular resources. Elucidating whether and how this process is influenced by sexual selection is crucial for understanding how ecological specialization promotes the evolution of novel traits and, potentially, speciation between ecomorphs. We evaluated the population-level effects of sexual selection (as mediated by mate choice) on ecological specialization in spadefoot toad tadpoles that express alternative ecomorphs. We manipulated whether sexual selection was present or reversed by mating females to their preferred versus non-preferred males, respectively. We then exposed their tadpoles to resource competition in experimental mesocosms. The resulting distribution of ecomorphs was similar between treatments, but sexual selection generated poorer trait integration in, and lower fitness of, the more specialized carnivore morph. Moreover, disruptive and directional natural selection were weaker in the sexual selection present treatment. Nevertheless, this effect on disruptive selection was smaller than previously documented effects of ecological opportunity and competitor density. Thus, sexual selection can inhibit adaptation to resource competition and thereby hinder ecological specialization, particularly when females obtain fitness benefits from mate choice that offset the cost of producing competitively inferior offspring

    Asymmetric reproductive character displacement in male aggregation behaviour

    Get PDF
    Reproductive character displacement—the evolution of traits that minimize reproductive interactions between species—can promote striking divergence in male signals or female mate preferences between populations that do and do not occur with heterospecifics. However, reproductive character displacement can affect other aspects of mating behaviour. Indeed, avoidance of heterospecific interactions might contribute to spatial (or temporal) aggregation of conspecifics. We examined this possibility in two species of hybridizing spadefoot toad (genus Spea). We found that in Spea bombifrons sympatric males were more likely than allopatric males to associate with calling males. Moreover, contrary to allopatric males, sympatric S. bombifrons males preferentially associated with conspecific male calls. By contrast, Spea multiplicata showed no differences between sympatry and allopatry in likelihood to associate with calling males. Further, sympatric and allopatric males did not differ in preference for conspecifics. However, allopatric S. multiplicata were more variable than sympatric males in their responses. Thus, in S. multiplicata, character displacement may have refined pre-existing aggregation behaviour. Our results suggest that heterospecific interactions can foster aggregative behaviour that might ultimately contribute to clustering of conspecifics. Such clustering can generate spatial or temporal segregation of reproductive activities among species and ultimately promote reproductive isolation

    Reproductive character displacement generates reproductive isolation among conspecific populations: an artificial neural network study

    Get PDF
    When interactions with heterospecifics prevent females from identifying conspecific mates, natural selection can promote the evolution of mating behaviours that minimize such interactions. Consequently, mating behaviours may diverge among conspecific populations in sympatry and in allopatry with heterospecifics. This divergence in conspecific mating behaviours—reproductive character displacement—can initiate speciation if mating behaviours become so divergent as to generate reproductive isolation between sympatric and allopatric conspecifics. We tested these ideas by using artificial neural networks to simulate the evolution of conspecific mate recognition in populations sympatric and allopatric with different heterospecifics. We found that advertisement calls diverged among the different conspecific populations. Consequently, networks strongly preferred calls from their own population to those from foreign conspecific populations. Thus, reproductive character displacement may promote reproductive isolation and, ultimately, speciation among conspecific populations

    Failed Sperm Development as a Reproductive Isolating Barrier between Species

    Get PDF
    Hybrid male sterility is a common reproductive isolating barrier between species. Yet, little is known about the actual developmental causes of this phenomenon, especially in naturally hybridizing species. We sought to evaluate the developmental causes of hybrid male sterility, using spadefoot toads as our study system. Plains spadefoot toads (S. bombifrons) and Mexican spadefoot toads (S. multiplicata) hybridize where they co-occur in the southwestern USA. Hybrids are viable, but hybrid males suffer reduced fertility. We compared testes size and developmental stages of sperm cell maturation between hybrid males and males of each species. We found that testes of hybrid males did not differ in mean size from pure-species males. However, hybrids showed a greater range of within-individual variation in testes size than pure-species males. Moreover, although hybrids produced similar numbers of early stage sperm cells, hybrids produced significantly fewer mature spermatozoids than pure-species males. Interestingly, an introgressed individual produced numbers of live sperm comparable to pure-species males, but the majority of these sperm cells were abnormally shaped and non-motile. These results indicate that hybrid incompatibilities in late sperm development serve as a reproductive isolating barrier between species. The nature of this breakdown highlights the possibilities that hybrid males may vary in fertility and that fertility could possibly be recovered in introgressed males

    Reinforcement generates reproductive isolation between neighbouring conspecific populations of spadefoot toads

    Get PDF
    Reproductive character displacement is the adaptive evolution of traits that minimize deleterious reproductive interactions between species. When arising from selection to avoid hybridization, this process is referred to as reinforcement. Reproductive character displacement generates divergence not only between interacting species, but also between conspecific populations that are sympatric with heterospecifics versus those that are allopatric. Consequently, such conspecific populations can become reproductively isolated. We compared female mate preferences in, and evaluated gene flow between, neighbouring populations of spadefoot toads that did and did not occur with heterospecifics (mixed- and pure-species populations, respectively). We found that in mixed-species populations females significantly preferred conspecifics. Such females also tended to prefer a conspecific call character that was dissimilar from heterospecifics. By contrast, females from pure-species populations did not discriminate conspecific from heterospecific calls. They also preferred a more exaggerated conspecific call character that resembles heterospecific males. Moreover, gene flow was significantly reduced between mixed- and pure-species population types. Thus, character displacement (and, more specifically, reinforcement) may initiate reproductive isolation between conspecific populations that differ in interactions with heterospecifics

    Why Do Species Co-Occur? A Test of Alternative Hypotheses Describing Abiotic Differences in Sympatry versus Allopatry Using Spadefoot Toads

    Get PDF
    Areas of co-occurrence between two species (sympatry) are often thought to arise in regions where abiotic conditions are conducive to both species and are therefore intermediate between regions where either species occurs alone (allopatry). Depending on historical factors or interactions between species, however, sympatry might not differ from allopatry, or, alternatively, sympatry might actually be more extreme in abiotic conditions relative to allopatry. Here, we evaluate these three hypothesized patterns for how sympatry compares to allopatry in abiotic conditions. We use two species of congeneric spadefoot toads, Spea multiplicata and S. bombifrons, as our study system. To test these hypotheses, we created ecological niche models (specifically using Maxent) for both species to create a map of the joint probability of occurrence of both species. Using the results of these models, we identified three types of locations: two where either species was predicted to occur alone (i.e., allopatry for S. multiplicata and allopatry for S. bombifrons) and one where both species were predicted to co-occur (i.e., sympatry). We then compared the abiotic environment between these three location types and found that sympatry was significantly hotter and drier than the allopatric regions. Thus, sympatry was not intermediate between the alternative allopatric sites. Instead, sympatry occurred at one extreme of the conditions occupied by both species. We hypothesize that biotic interactions in these extreme environments facilitate co-occurrence. Specifically, hybridization between S. bombifrons females and S. multiplicata males may facilitate co-occurrence by decreasing development time of tadpoles. Additionally, the presence of alternative food resources in more extreme conditions may preclude competitive exclusion of one species by the other. This work has implications for predicting how interacting species will respond to climate change, because species interactions may facilitate survival in extreme habitats

    CIRCULAR DICHROISM OF LIGHT-HARVESTING COMPLEXES FROM PURPLE PHOTOSYNTHETIC BACTERIA

    Get PDF
    The CD spectra of a range of antenna complexes from several different species of purple photosynthetic bacteria were recorded in the wavelength range of 190 to 930 nm. Analysis of the far UV CD (190 to 250 nm) showed that in each case except for the B800-850 from Chr. vinosum the secondary structure of the light-harvesting complexes contains a large amount of α-helix (50%) and very little 0-pleated sheet. This confirms the predictions of the group of Zuber of a high a-helical content based upon consideration of the primary structures of several antenna apoproteins. The CD spectra from the carotenoids and the bacteriochlorophylls show considerable variations depending upon the type of antenna complex. The different amplitude ratios in the CD spectrum for the bacteriochlorophyll Qy, Qx and Soret bands indicate not only different degrees of exciton coupling, but also a strong and variable hyperchromism (Scherz and Parson, 1984a, b)

    Rubrivivax benzoatilyticus sp.nov., an aromatic hydrocarbon-degrading purple betaproteobacterium

    Get PDF
    A brown-coloured bacterium was isolated from photoheterotrophic (benzoate) enrichments of flooded paddy soil from Andhra Pradesh, India. On the basis of 16S rRNA gene sequence analysis, strain JA2(T) was shown to belong to the class Betaproteobacteria, related to Rubrivivax gelatinosus (99 % sequence similarity). Cells of strain JA2(T) are Gram-negative, motile rods with monopolar single flagella. The strain contained bacteriochlorophyll a and most probably the carotenoids spirilloxanthin and sphaeroidene, but did not have internal membrane structures. Intact cells had absorption maxima at 378, 488, 520, 590, 802 and 884 nm. No growth factors were required. Strain JA2(T) grew on benzoate, 2-aminobenzoate (anthranilate), 4-aminobenzoate, 4-hydroxybenzoate, phthalate, phenylalanine, trans-cinnamate, benzamide, salicylate, cyclohexanone, cyclohexanol and cyclohexane-2-carboxylate as carbon sources and/or electron donors. The DNA G+C content was 74.9 mol%. Based on DNA-DNA hybridization studies, 16S rRNA gene sequence analysis and morphological and physiological characteristics, strain JA2(T) is different from representatives of other photosynthetic species of the Betaproteobacteria and was recognised as representing a novel species, for which the name Rubrivivax benzoatilyticus sp. nov. is proposed. The type strain is JA2(T) (=ATCC BAA-35(T)=JCM 13220(T)=MTCC 7087(T))

    Climate adaptation and speciation : particular focus on reproductive barriers in Ficedula flycatchers

    Get PDF
    Climate adaptation is surprisingly rarely reported as a cause for the build-up of reproductive isolation between diverging populations. In this review, we summarize evidence for effects of climate adaptation on pre- and postzygotic isolation between emerging species with a particular focus on pied (Ficedula hypoleuca) and collared (Ficedula albicollis) flycatchers as a model for research on speciation. Effects of climate adaptation on prezygotic isolation or extrinsic selection against hybrids have been documented in several taxa, but the combined action of climate adaptation and sexual selection is particularly well explored in Ficedula flycatchers. There is a general lack of evidence for divergent climate adaptation causing intrinsic postzygotic isolation. However, we argue that the profound effects of divergence in climate adaptation on the whole biochemical machinery of organisms and hence many underlying genes should increase the likelihood of genetic incompatibilities arising as side effects. Fast temperature-dependent co-evolution between mitochondrial and nuclear genomes may be particularly likely to lead to hybrid sterility. Thus, how climate adaptation relates to reproductive isolation is best explored in relation to fast-evolving barriers to gene flow, while more research on later stages of divergence is needed to achieve a complete understanding of climate-driven speciation.Peer reviewe

    Evolutionary change in continuous reaction norms

    Get PDF
    Abstract Understanding the evolution of reaction norms remains a major challenge in ecology and evolution. Investigating evolutionary divergence in reaction norm shapes between populations and closely related species is one approach to providing insights. Here we use a meta-analytic approach to compare divergence in reaction norms of closely related species or populations of animals and plants across types of traits and environments. We quantified mean-standardized differences in overall trait means (Offset) and reaction norm shape (including both Slope and Curvature). These analyses revealed that differences in shape (Slope and Curvature together) were generally greater than differences in Offset. Additionally, differences in Curvature were generally greater than differences in Slope. The type of taxon contrast (species vs. population), trait, organism, and the type and novelty of environments all contributed to the best-fitting models, especially for Offset, Curvature, and the total differences (Total) between reaction norms. Congeneric species had greater differences in reaction norms than populations, and novel environmental conditions increased the differences in reaction norms between populations or species. These results show that evolutionary divergence of curvature is common and should be considered an important aspect of plasticity, together with slope. Biological details about traits and environments, including cryptic variation expressed in novel environmental conditions, may be critical to understanding how reaction norms evolve in novel and rapidly changing environments
    • 

    corecore