50 research outputs found

    The role of TREM2 in Alzheimer's disease and other neurodegenerative disorders

    Get PDF
    Summary Alzheimer's disease is a genetically complex disorder; rare variants in the triggering receptor expressed on myeloid cells 2 (TREM2) gene have been shown to as much as triple an individual's risk of developing Alzheimer's disease. TREM2 is a transmembrane receptor expressed in cells of the myeloid lineage, and its association with Alzheimer's disease supports the involvement of immune and inflammatory pathways in the cause of the disease, rather than as a consequence of the disease. TREM2 variants associated with Alzheimer's disease induce partial loss of function of the TREM2 protein and alter the behaviour of microglial cells, including their response to amyloid plaques. TREM2 variants have also been shown to cause polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy and frontotemporal dementia. Although the low frequency of TREM2 variants makes it difficult to establish robust genotype–phenotype correlations, such studies are essential to enable a comprehensive understanding of the role of TREM2 in different neurological diseases, with the ultimate goal of developing novel therapeutic approaches

    A DNA methylation biomarker of alcohol consumption.

    Get PDF
    The lack of reliable measures of alcohol intake is a major obstacle to the diagnosis and treatment of alcohol-related diseases. Epigenetic modifications such as DNA methylation may provide novel biomarkers of alcohol use. To examine this possibility, we performed an epigenome-wide association study of methylation of cytosine-phosphate-guanine dinucleotide (CpG) sites in relation to alcohol intake in 13 population-based cohorts (ntotal=13 317; 54% women; mean age across cohorts 42-76 years) using whole blood (9643 European and 2423 African ancestries) or monocyte-derived DNA (588 European, 263 African and 400 Hispanic ancestry) samples. We performed meta-analysis and variable selection in whole-blood samples of people of European ancestry (n=6926) and identified 144 CpGs that provided substantial discrimination (area under the curve=0.90-0.99) for current heavy alcohol intake (⩾42 g per day in men and ⩾28 g per day in women) in four replication cohorts. The ancestry-stratified meta-analysis in whole blood identified 328 (9643 European ancestry samples) and 165 (2423 African ancestry samples) alcohol-related CpGs at Bonferroni-adjusted P<1 × 10-7. Analysis of the monocyte-derived DNA (n=1251) identified 62 alcohol-related CpGs at P<1 × 10-7. In whole-blood samples of people of European ancestry, we detected differential methylation in two neurotransmitter receptor genes, the γ-Aminobutyric acid-A receptor delta and γ-aminobutyric acid B receptor subunit 1; their differential methylation was associated with expression levels of a number of genes involved in immune function. In conclusion, we have identified a robust alcohol-related DNA methylation signature and shown the potential utility of DNA methylation as a clinically useful diagnostic test to detect current heavy alcohol consumption.Medical Research Council (Grant IDs: MC_UU_12015/1, MC_UU_12015/2), Wellcome Trust. Detailed acknowledgements are included in the Supplementary Information that accompanies the paper on the Molecular Psychiatry website

    A Novel Neurotrophic Drug for Cognitive Enhancement and Alzheimer's Disease

    Get PDF
    Currently, the major drug discovery paradigm for neurodegenerative diseases is based upon high affinity ligands for single disease-specific targets. For Alzheimer's disease (AD), the focus is the amyloid beta peptide (Aß) that mediates familial Alzheimer's disease pathology. However, given that age is the greatest risk factor for AD, we explored an alternative drug discovery scheme that is based upon efficacy in multiple cell culture models of age-associated pathologies rather than exclusively amyloid metabolism. Using this approach, we identified an exceptionally potent, orally active, neurotrophic molecule that facilitates memory in normal rodents, and prevents the loss of synaptic proteins and cognitive decline in a transgenic AD mouse model

    Segregation of ON and OFF afferents to ferret visual cortex

    No full text

    d-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors

    No full text
    d-serine has been proposed as an endogenous modulator of N-methyl-d-aspartate (NMDA) receptors in many brain regions, but its presence and function in the vertebrate retina have not been characterized. We have detected d-serine and its synthesizing enzyme, serine racemase, in the retinas of several vertebrate species, including salamanders, rats, and mice and have localized both constituents to Müller cells and astrocytes, the two major glial cell types in the retina. Physiological studies in rats and salamanders demonstrated that, in retinal ganglion cells, d-serine can enhance excitatory currents elicited by the application of NMDA, as well as the NMDA receptor component of light-evoked synaptic responses. Application of d-amino acid oxidase, which degrades d-serine, reduced the magnitude of NMDA receptor-mediated currents, raising the possibility that endogenous d-serine serves as a ligand for setting the sensitivity of NMDA receptors under physiological conditions. These observations raise exciting new questions about the role of glial cells in regulating the excitability of neurons through release of d-serine
    corecore