526 research outputs found
The Pan-STARRS1 Photometric System
The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of
the sky north of declination -30 deg to unprecedented depths. These data are
being photometrically and astrometrically calibrated and will serve as a
reference for many other purposes. In this paper we present our determination
of the Pan-STARRS photometric system: gp1, rp1, ip1, zp1, yp1, and wp1. The
Pan-STARRS photometric system is fundamentally based on the HST Calspec
spectrophotometric observations, which in turn are fundamentally based on
models of white dwarf atmospheres. We define the Pan-STARRS magnitude system,
and describe in detail our measurement of the system passbands, including both
the instrumental sensitivity and atmospheric transmission functions.
Byproducts, including transformations to other photometric systems, galactic
extinction, and stellar locus are also provided. We close with a discussion of
remaining systematic errors.Comment: 39 pages, 9 figures, machine readable table of bandpasses, accepted
for publication in Ap
Interacting classical dimers on the square lattice
We study a model of close-packed dimers on the square lattice with a nearest
neighbor interaction between parallel dimers. This model corresponds to the
classical limit of quantum dimer models [D.S. Rokhsar and S.A. Kivelson, Phys.
Rev. Lett.{\bf 61}, 2376 (1988)]. By means of Monte Carlo and Transfer Matrix
calculations, we show that this system undergoes a Kosterlitz-Thouless
transition separating a low temperature ordered phase where dimers are aligned
in columns from a high temperature critical phase with continuously varying
exponents. This is understood by constructing the corresponding Coulomb gas,
whose coupling constant is computed numerically. We also discuss doped models
and implications on the finite-temperature phase diagram of quantum dimer
models.Comment: 4 pages, 4 figures; v2 : Added results on doped models; published
versio
Large-q asymptotics of the random bond Potts model
We numerically examine the large-q asymptotics of the q-state random bond
Potts model. Special attention is paid to the parametrisation of the critical
line, which is determined by combining the loop representation of the transfer
matrix with Zamolodchikov's c-theorem. Asymptotically the central charge seems
to behave like c(q) = 1/2 log_2(q) + O(1). Very accurate values of the bulk
magnetic exponent x_1 are then extracted by performing Monte Carlo simulations
directly at the critical point. As q -> infinity, these seem to tend to a
non-trivial limit, x_1 -> 0.192 +- 0.002.Comment: 9 pages, no figure
Numerical simulation of the thermal fragmentation process in fullerene C60
The processes of defect formation and annealing in fullerene C60 at
T=(4000-6000)K are studied by the molecular dynamics technique with a
tight-binding potential. The cluster lifetime until fragmentation due to the
loss of a C2 dimer has been calculated as a function of temperature. The
activation energy and the frequency factor in the Arrhenius equation for the
fragmentation rate have been found to be Ea = (9.2 +- 0.4) eV and A = (8 +-
1)10^{19} 1/s. It is shown that fragmentation can occur after the C60 cluster
loses its spherical shape. This fact must be taken into account in theoretical
calculations of Ea.Comment: 12 pages, 3 figure
Isotope shift in the electron affinity of chlorine
The specific mass shift in the electron affinity between ^{35}Cl and ^{37}Cl
has been determined by tunable laser photodetachment spectroscopy to be
-0.51(14) GHz. The isotope shift was observed as a difference in the onset of
the photodetachment process for the two isotopes. In addition, the electron
affinity of Cl was found to be 29138.59(22) cm^{-1}, giving a factor of 2
improvement in the accuracy over earlier measurements. Many-body calculations
including lowest-order correlation effects demonstrates the sensitivity of the
specific mass shift and show that the inclusion of higher-order correlation
effects would be necessary for a quantitative description.Comment: 16 pages, 6 figures, LaTeX2e, amsmat
The Cosmic Infrared Background Experiment (CIBER): The Narrow-Band Spectrometer
We have developed a near-infrared spectrometer designed to measure the absolute intensity of the solar 854.2 nm Ca II Fraunhofer line, scattered by interplanetary dust, in the zodiacal light (ZL) spectrum. Based on the known equivalent line width in the solar spectrum, this measurement can derive the zodiacal brightness, testing models of the ZL based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. The spectrometer is based on a simple high-resolution tipped filter placed in front of a compact camera with wide-field refractive optics to provide the large optical throughput and high sensitivity required for rocket-borne observations. We discuss the instrument requirements for an accurate measurement of the absolute ZL brightness, the measured laboratory characterization, and the instrument performance in flight
The Cosmic Infrared Background Experiment (CIBER): The Low Resolution Spectrometer
Absolute spectrophotometric measurements of diffuse radiation at 1 \mu m to 2
\mu m are crucial to our understanding of the radiative content of the Universe
from nucleosynthesis since the epoch of reionization, the composition and
structure of the Zodiacal dust cloud in our solar system, and the diffuse
galactic light arising from starlight scattered by interstellar dust. The Low
Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background
Experiment (CIBER) is a \lambda / \Delta \lambda \sim 15-30 absolute
spectrophotometer designed to make precision measurements of the absolute
near-infrared sky brightness between 0.75 \mu m < \lambda < 2.1 \mu m. This
paper presents the optical, mechanical and electronic design of the LRS, as
well as the ground testing, characterization and calibration measurements
undertaken before flight to verify its performance. The LRS is shown to work to
specifications, achieving the necessary optical and sensitivity performance. We
describe our understanding and control of sources of systematic error for
absolute photometry of the near-infrared extragalactic background light.Comment: 13 pages, 13 figures, accepted by The Astrophysical Journal
Supplement Serie
- …