3,420 research outputs found

    The gauging of two-dimensional bosonic sigma models on world-sheets with defects

    Full text link
    We extend our analysis of the gauging of rigid symmetries in bosonic two-dimensional sigma models with Wess-Zumino terms in the action to the case of world-sheets with defects. A structure that permits a non-anomalous coupling of such sigma models to world-sheet gauge fields of arbitrary topology is analysed, together with obstructions to its existence, and the classification of its inequivalent choices.Comment: 94 pages, 1 figur

    Pulsed squeezed light: simultaneous squeezing of multiple modes

    Full text link
    We analyze the spectral properties of squeezed light produced by means of pulsed, single-pass degenerate parametric down-conversion. The multimode output of this process can be decomposed into characteristic modes undergoing independent squeezing evolution akin to the Schmidt decomposition of the biphoton spectrum. The main features of this decomposition can be understood using a simple analytical model developed in the perturbative regime. In the strong pumping regime, for which the perturbative approach is not valid, we present a numerical analysis, specializing to the case of one-dimensional propagation in a beta-barium borate waveguide. Characterization of the squeezing modes provides us with an insight necessary for optimizing homodyne detection of squeezing. For a weak parametric process, efficient squeezing is found in a broad range of local oscillator modes, whereas the intense generation regime places much more stringent conditions on the local oscillator. We point out that without meeting these conditions, the detected squeezing can actually diminish with the increasing pumping strength, and we expose physical reasons behind this inefficiency

    Sublinear Estimation of Weighted Matchings in Dynamic Data Streams

    Full text link
    This paper presents an algorithm for estimating the weight of a maximum weighted matching by augmenting any estimation routine for the size of an unweighted matching. The algorithm is implementable in any streaming model including dynamic graph streams. We also give the first constant estimation for the maximum matching size in a dynamic graph stream for planar graphs (or any graph with bounded arboricity) using O~(n4/5)\tilde{O}(n^{4/5}) space which also extends to weighted matching. Using previous results by Kapralov, Khanna, and Sudan (2014) we obtain a polylog(n)\mathrm{polylog}(n) approximation for general graphs using polylog(n)\mathrm{polylog}(n) space in random order streams, respectively. In addition, we give a space lower bound of Ω(n1ε)\Omega(n^{1-\varepsilon}) for any randomized algorithm estimating the size of a maximum matching up to a 1+O(ε)1+O(\varepsilon) factor for adversarial streams

    The effects of the next-nearest-neighbour density-density interaction in the atomic limit of the extended Hubbard model

    Full text link
    We have studied the extended Hubbard model in the atomic limit. The Hamiltonian analyzed consists of the effective on-site interaction U and the intersite density-density interactions Wij (both: nearest-neighbour and next-nearest-neighbour). The model can be considered as a simple effective model of charge ordered insulators. The phase diagrams and thermodynamic properties of this system have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. Our investigation of the general case taking into account for the first time the effects of longer-ranged density-density interaction (repulsive and attractive) as well as possible phase separations shows that, depending on the values of the interaction parameters and the electron concentration, the system can exhibit not only several homogeneous charge ordered (CO) phases, but also various phase separated states (CO-CO and CO-nonordered). One finds that the model considered exhibits very interesting multicritical behaviours and features, including among others bicritical, tricritical, critical-end and isolated critical points.Comment: 12 pages, 7 figures; final version, pdf-ReVTeX; corrected typos in reference; submitted to Journal of Physics: Condensed Matte

    Fidelity balance in quantum operations

    Full text link
    I derive a tight bound between the quality of estimating the state of a single copy of a dd-level system, and the degree the initial state has to be altered in course of this procedure. This result provides a complete analytical description of the quantum mechanical trade-off between the information gain and the quantum state disturbance expressed in terms of mean fidelities. I also discuss consequences of this bound for quantum teleportation using nonmaximally entangled states.Comment: 4 pages, REVTeX. Revised versio

    Results of the REFLEX (Return Flux Experiment) Flight Mission

    Get PDF
    The numerous problems occurring in this first flight of the REFLEX experiment, both in the spacecraft and with the instrument package, seriously constrained the acquisition and analysis of data and severely limited the interpretation of the data that were obtained. Of these, the ambient helium measurements appear to be the most promising. They are summarized and discussed in Appendix A. Further analyses could be attempted to establish the correct values for the energy centers as they varied during the mission. In addition, an extensive laboratory recalibration on a high-speed beam system could in principle provide corrections to be used in analyzing and interpreting the returned data set. The unknown malfunction which generated the energy drift needs to be understood and corrected before the REFLEX experiment is reflown; some hardware modification, or at least retuning, is likely to be required

    Phase separation in a lattice model of a superconductor with pair hopping

    Get PDF
    We have studied the extended Hubbard model with pair hopping in the atomic limit for arbitrary electron density and chemical potential. The Hamiltonian considered consists of (i) the effective on-site interaction U and (ii) the intersite charge exchange interactions I, determining the hopping of electron pairs between nearest-neighbour sites. The model can be treated as a simple effective model of a superconductor with very short coherence length in which electrons are localized and only electron pairs have possibility of transferring. The phase diagrams and thermodynamic properties of this model have been determined within the variational approach, which treats the on-site interaction term exactly and the intersite interactions within the mean-field approximation. We have also obtained rigorous results for a linear chain (d=1) in the ground state. Moreover, at T=0 some results derived within the random phase approximation (and the spin-wave approximation) for d=2 and d=3 lattices and within the low density expansions for d=3 lattices are presented. Our investigation of the general case (as a function of the electron concentration and as a function of the chemical potential) shows that, depending on the values of interaction parameters, the system can exhibit not only the homogeneous phases: superconducting (SS) and nonordered (NO), but also the phase separated states (PS: SS-NO). The system considered exhibits interesting multicritical behaviour including tricritical points.Comment: 15 pages, 9 figures; pdf-ReVTeX, final version, corrected typos; submitted to Journal of Physics: Condensed Matte

    The EPICS Software Framework Moves from Controls to Physics

    No full text
    The Experimental Physics and Industrial Control System (EPICS), is an open-source software framework for high-performance distributed control, and is at the heart of many of the world’s large accelerators and telescopes. Recently, EPICS has undergone a major revision, with the aim of better computing supporting for the next generation of machines and analytical tools. Many new data types, such as matrices, tables, images, and statistical descriptions, plus users’ own data types, now supplement the simple scalar and waveform types of the former EPICS. New computational architectures for scientific computing have been added for high-performance data processing services and pipelining. Python and Java bindings have enabled powerful new user interfaces. The result has been that controls are now being integrated with modelling and simulation, machine learning, enterprise databases, and experiment DAQs. We introduce this new EPICS (version 7) from the perspective of accelerator physics and review early adoption cases in accelerators around the world

    Stochastic evolution of four species in cyclic competition

    Full text link
    We study the stochastic evolution of four species in cyclic competition in a well mixed environment. In systems composed of a finite number NN of particles these simple interaction rules result in a rich variety of extinction scenarios, from single species domination to coexistence between non-interacting species. Using exact results and numerical simulations we discuss the temporal evolution of the system for different values of NN, for different values of the reaction rates, as well as for different initial conditions. As expected, the stochastic evolution is found to closely follow the mean-field result for large NN, with notable deviations appearing in proximity of extinction events. Different ways of characterizing and predicting extinction events are discussed.Comment: 19 pages, 6 figures, submitted to J. Stat. Mec
    corecore