We have studied the extended Hubbard model with pair hopping in the atomic
limit for arbitrary electron density and chemical potential. The Hamiltonian
considered consists of (i) the effective on-site interaction U and (ii) the
intersite charge exchange interactions I, determining the hopping of electron
pairs between nearest-neighbour sites. The model can be treated as a simple
effective model of a superconductor with very short coherence length in which
electrons are localized and only electron pairs have possibility of
transferring. The phase diagrams and thermodynamic properties of this model
have been determined within the variational approach, which treats the on-site
interaction term exactly and the intersite interactions within the mean-field
approximation. We have also obtained rigorous results for a linear chain (d=1)
in the ground state. Moreover, at T=0 some results derived within the random
phase approximation (and the spin-wave approximation) for d=2 and d=3 lattices
and within the low density expansions for d=3 lattices are presented. Our
investigation of the general case (as a function of the electron concentration
and as a function of the chemical potential) shows that, depending on the
values of interaction parameters, the system can exhibit not only the
homogeneous phases: superconducting (SS) and nonordered (NO), but also the
phase separated states (PS: SS-NO). The system considered exhibits interesting
multicritical behaviour including tricritical points.Comment: 15 pages, 9 figures; pdf-ReVTeX, final version, corrected typos;
submitted to Journal of Physics: Condensed Matte