47 research outputs found
Ferromagnetism in laser deposited anatase TiCoO_{2-\delta} films
Pulsed laser deposited films of Co doped anatase TiO2 are examined for Co
substitutionality, ferromagnetism, transport, magnetotransport and optical
properties. Our results show limited solubility (up to ~ 2 %) of Co in the
as-grown films and formation of Co clusters thereafter. For Ti0.93Co0.07O2-d
sample, which exhibits a Curie temperature (Tc) over 1180 K, we find the
presence of 20-50 nm Co clusters as well as a small concentration of Co
incorporated into the remaining matrix. After being subjected to the high
temperature anneal during the first magnetization measurement, the very same
sample shows a Tc ~ 650 K and almost full matrix incorporation of Co. This Tc
is close to that of as-grown Ti0.99Co0.01O2-d sample (~ 700 K). The transport,
magnetotransport and optical studies also reveal interesting effects of the
matrix incorporation of Co. These results are indicative of an intrinsic
Ti1-xCoxO2-d diluted magnetic semiconductor with Tc of about 650-700 K.Comment: 14 pages + 9 figure
Connecting Land–Atmosphere Interactions to Surface Heterogeneity in CHEESEHEAD19
The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models
Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides
Although Li- and Mn-rich transition metal oxides have been extensively studied as high-capacity cathode materials for Li-ion batteries, the crystal structure of these materials in their pristine state is not yet fully understood. Here we apply complementary electron microscopy and spectroscopy techniques at multi-length scale on well-formed Li1.2(Ni0.13Mn0.54Co0.13)O2 crystals with two different morphologies as well as two commercially available materials with similar compositions, and unambiguously describe the structural make-up of these samples. Systematically observing the entire primary particles along multiple zone axes reveals that they are consistently made up of a single phase, save for rare localized defects and a thin surface layer on certain crystallographic facets. More specifically, we show the bulk of the oxides can be described as an aperiodic crystal consisting of randomly stacked domains that correspond to three variants of monoclinic structure, while the surface is composed of a Co- and/or Ni-rich spinel with antisite defects
A New Research Approach for Observing and Characterizing Land-Atmosphere Feedback
Forecast errors with respect to wind, temperature, moisture, clouds, and precipitation largely correspond to the limited capability of current earth system models to capture and simulate land-atmosphere feedback. To facilitate its realistic simulation in next generation models, an improved process understanding of the related complex interactions is essential. To this end, accurate 3D observations of key variables in the land-atmosphere (L-A) system with high vertical and temporal resolution from the surface to the free troposphere are indispensable. Recently, we developed a synergy of innovative ground-based, scanning active remote sensing systems for 2D to 3D measurements of wind, temperature, and water vapor from the surface to the lower troposphere that is able to provide comprehensive data sets for characterizing L-A feedback independently of any model input. Several new applications are introduced such as the mapping of surface momentum, sensible heat, and latent heat fluxes in heterogeneous terrain, the testing of Monin-Obukhov similarity theory and turbulence parameterizations, the direct measurement of entrainment fluxes, and the development of new flux-gradient relationships. An experimental design taking advantage of the sensors' synergy and advanced capabilities was realized for the first time during the Land Atmosphere Feedback Experiment (LAFE), conducted at the Atmospheric Radiation Measurement Program Southern Great Plains site in August 2017. The scientific goals and the strategy of achieving them with the LAFE data set are introduced. We envision the initiation of innovative L-A feedback studies in different climate regions to improve weather forecast, climate, and earth system models worldwide