7,431 research outputs found

    Performance of a GridPix detector based on the Timepix3 chip

    Full text link
    A GridPix readout for a TPC based on the Timepix3 chip is developed for future applications at a linear collider. The GridPix detector consists of a gaseous drift volume read out by a single Timepix3 chip with an integrated amplification grid. Its performance is studied in a test beam with 2.5 GeV electrons. The GridPix detector detects single ionization electrons with high efficiency. The Timepix3 chip allowed for high sample rates and time walk corrections. Diffusion is found to be the dominating error on the track position measurement both in the pixel plane and in the drift direction, and systematic distortions in the pixel plane are below 10 μ\mum. Using a truncated sum, an energy loss (dE/dx) resolution of 4.1% is found for an effective track length of 1 m.Comment: To be published in Nuclear Instruments and Methods in Physics Research Section

    Can Action Research Strengthen District Health Management and Improve Health Workforce Performance? A Research Protocol.

    Get PDF
    The single biggest barrier for countries in sub-Saharan Africa (SSA) to scale up the necessary health services for addressing the three health-related Millennium Development Goals and achieving Universal Health Coverage is the lack of an adequate and well-performing health workforce. This deficit needs to be addressed both by training more new health personnel and by improving the performance of the existing and future health workforce. However, efforts have mostly been focused on training new staff and less on improving the performance of the existing health workforce. The purpose of this paper is to disseminate the protocol for the PERFORM project and reflect on the key challenges encountered during the development of this methodology and how they are being overcome. The overall aim of the PERFORM project is to identify ways of strengthening district management in order to address health workforce inadequacies by improving health workforce performance in SSA. The study will take place in three districts each in Ghana, Tanzania and Uganda using an action research approach. With the support of the country research teams, the district health management teams (DHMTs) will lead on planning, implementation, observation, reflection and redefinition of the activities in the study. Taking into account the national and local human resource (HR) and health systems (HS) policies and practices already in place, 'bundles' of HR/HS strategies that are feasible within the context and affordable within the districts' budget will be developed by the DHMTs to strengthen priority areas of health workforce performance. A comparative analysis of the findings from the three districts in each country will add new knowledge on the effects of these HR/HS bundles on DHMT management and workforce performance and the impact of an action research approach on improving the effectiveness of the DHMTs in implementing these interventions. Different challenges were faced during the development of the methodology. These include the changing context in the study districts, competing with other projects and duties for the time of district managers, complexity of the study design, maintaining the anonymity and confidentiality of study participants as well as how to record the processes during the study. We also discuss how these challenges are being addressed. The dissemination of this research protocol is intended to generate interest in the PERFORM project and also stimulate discussion on the use of action research in complex studies such as this on strengthening district health management to improve health workforce performance

    Impact of b-value on estimates of apparent fibre density

    Get PDF
    Recent advances in diffusion magnetic resonance imaging (dMRI) analysis techniques have improved our understanding of fibre-specific variations in white matter microstructure. Increasingly, studies are adopting multi-shell dMRI acquisitions to improve the robustness of dMRI-based inferences. However, the impact of b-value choice on the estimation of dMRI measures such as apparent fibre density (AFD) derived from spherical deconvolution is not known. Here, we investigate the impact of b-value sampling scheme on estimates of AFD. First, we performed simulations to assess the correspondence between AFD and simulated intra-axonal signal fraction across multiple b-value sampling schemes. We then studied the impact of sampling scheme on the relationship between AFD and age in a developmental population (n=78) aged 8-18 (mean=12.4, SD=2.9 years) using hierarchical clustering and whole brain fixel-based analyses. Multi-shell dMRI data were collected at 3.0T using ultra-strong gradients (300 mT/m), using 6 diffusion-weighted shells ranging from 0 – 6000 s/mm2. Simulations revealed that the correspondence between estimated AFD and simulated intra-axonal signal fraction was improved with high b-value shells due to increased suppression of the extra-axonal signal. These results were supported by in vivo data, as sensitivity to developmental age-relationships was improved with increasing b-value (b=6000 s/mm2, median R2 = .34; b=4000 s/mm2, median R2 = .29; b=2400 s/mm2, median R2 = .21; b=1200 s/mm2, median R2 = .17) in a tract-specific fashion. Overall, estimates of AFD and age-related microstructural development were better characterised at high diffusion-weightings due to improved correspondence with intra-axonal properties

    A shortened version of Raven's standard progressive matrices for children and adolescents

    Get PDF
    Numerous developmental studies assess general cognitive ability, not as the primary variable of interest, but rather as a background variable. Raven's Progressive Matrices is an easy to administer non-verbal test that is widely used to measure general cognitive ability. However, the relatively long administration time (up to 45 min) is still a drawback for developmental studies as it often leaves little time to assess the primary variable of interest. Therefore, we used a machine learning approach - regularized regression in combination with cross-validation - to develop a short 15-item version. We did so for two age groups, namely 9 to 12 years and 13 to 16 years. The short versions predicted the scores on the standard full 60-item versions to a very high degree r = 0.89 (9-12 years) and r = 0.93 (13-16 years). We, therefore, recommend using the short version to measure general cognitive ability as a background variable in developmental studies

    Iron, silicate, and light co-limitation of three Southern Ocean diatom species

    Get PDF
    The effect of combined iron, silicate, and light co-limitation was investigated in the three diatom species Actinocyclus sp. Ehrenberg, Chaetoceros dichaeta Ehrenberg, and Chaetoceros debilis Cleve, isolated from the Southern Ocean (SO). Growth of all species was co-limited by iron and silicate, reflected in a significant increase in the number of cell divisions compared to the control. Lowest relative Si uptake and drastic frustule malformation was found under iron and silicate co-limitation in C. dichaeta, while Si limitation in general caused cell elongation in both Chaetoceros species. Higher light intensities similar to SO surface conditions showed a negative impact on growth of C. dichaeta and Actinocyclus sp. and no effect on C. debilis. This is in contrast to the assumed light limitation of SO diatoms due to deep wind driven mixing. Our results suggest that growth and species composition of Southern Ocean diatoms is influenced by a sensitive interaction of the abiotic factors, iron, silicate, and light

    Quantitative predictions on auxin-induced polar distribution of PIN proteins during vein formation in leaves

    Get PDF
    The dynamic patterning of the plant hormone auxin and its efflux facilitator the PIN protein are the key regulator for the spatial and temporal organization of plant development. In particular auxin induces the polar localization of its own efflux facilitator. Due to this positive feedback auxin flow is directed and patterns of auxin and PIN arise. During the earliest stage of vein initiation in leaves auxin accumulates in a single cell in a rim of epidermal cells from which it flows into the ground meristem tissue of the leaf blade. There the localized auxin supply yields the successive polarization of PIN distribution along a strand of cells. We model the auxin and PIN dynamics within cells with a minimal canalization model. Solving the model analytically we uncover an excitable polarization front that triggers a polar distribution of PIN proteins in cells. As polarization fronts may extend to opposing directions from their initiation site we suggest a possible resolution to the puzzling occurrence of bipolar cells, such we offer an explanation for the development of closed, looped veins. Employing non-linear analysis we identify the role of the contributing microscopic processes during polarization. Furthermore, we deduce quantitative predictions on polarization fronts establishing a route to determine the up to now largely unknown kinetic rates of auxin and PIN dynamics.Comment: 9 pages, 4 figures, supplemental information included, accepted for publication in Eur. Phys. J.
    corecore