948 research outputs found

    Short Gamma-Ray Bursts and Binary Mergers in Spiral and Elliptical Galaxies: Redshift Distribution and Hosts

    Full text link
    To test whether the short GRB rates, redshift distribution and host galaxies are consistent with current theoretical predictions, we use avery large database of population synthesis calculations to examine BH-NS and NS-NS merger rates in the universe, factoring in (i) the star formation history of the universe, (ii) a heterogeneous population of star-forming galaxies, including spirals and ellipticals, and (iii) a simple flux-limited selection model for short GRB detection. When we require our models reproduce the known short GRB rates and redshift measurements (and, for NS-NS, the merger rates extrapolated from binary pulsars in the Galaxy), a small fraction of models reproduce all observations, both when we assume a NS-NS and a BH-NS origin for bursts. Most commonly models produce mergers preferentially in spiral galaxies if short GRBs arise from NS-NS mergers alone. Model universes where present-day binary mergers occur preferentially in elliptical galaxies necessarily include a significant fraction of binaries with long delay times between birth and merger (often O(10Gyr)O(10{\rm Gyr})). Though long delays occur, almost all of our models predict that a higher proportion of short GRBs should occur at moderate to high redshift (e.g., z>1z>1) than has presently been observed, in agreement with recent observations which suggest a selection bias towards successful follow-up of low-redshift short GRBs. Finally, if only a fraction of BH-NS mergers have the right combination of masses and spins to make GRBs, then at best only a small fraction of BH-NS models could be consistent with all {\em current} available data. (Abridged)Comment: 14 figures, using bitmapped fonts (via eps2eps) to fit in archive space restrictions; better resolution figures are available from the author. Accepted for publication in ApJ. v3 updates reference

    Constraining population synthesis models via the binary neutron star population

    Full text link
    The observed sample of double neutron-star (NS-NS) binaries presents a challenge to population-synthesis models of compact object formation: the parameters entering into these models must be carefully chosen so as to match (i) the observed star formation rate and (ii) the formation rate of NS-NS binaries, which can be estimated from the observed sample and the selection effects related to the discoveries with radio-pulsar surveys. In this paper, we select from an extremely broad family of possible population synthesis models those few (2%) which are consistent with the observed sample of NS-NS binaries. To further sharpen the constraints the observed NS-NS population places upon our understanding of compact-object formation processes, we separate the observed NS-NS population into two channels: (i) merging NS-NS binaries, which will inspiral and merge through the action of gravitational waves within 1010 Gyr, and (ii) wide NS-NS binaries, consisting of all the rest. With the subset of astrophysically consistent models, we explore the implications for the rates at which double black hole (BH-BH), black hole-neutron star (BH-NS), and NS-NS binaries will merge through the emission of gravitational waves.Comment: (v1) Submitted to ApJ. Uses emulateapj.cls. 8 pages, 7 figures. (v2) Minor textual changes in response to referee queries. Substantial additions in appendicies, including a detailed discussion of sample multidimensional population synthesis fit

    Spermatogenesis and sertoli cell activity in mice lacking Sertoli cell receptors for follicle stimulating hormone and androgen

    Get PDF
    Spermatogenesis in the adult male depends on the action of FSH and androgen. Ablation of either hormone has deleterious effects on Sertoli cell function and the progression of germ cells through spermatogenesis. In this study we generated mice lacking both FSH receptors (FSHRKO) and androgen receptors on the Sertoli cell (SCARKO) to examine how FSH and androgen combine to regulate Sertoli cell function and spermatogenesis. Sertoli cell number in FSHRKO-SCARKO mice was reduced by about 50% but was not significantly different from FSHRKO mice. In contrast, total germ cell number in FSHRKO-SCARKO mice was reduced to 2% of control mice (and 20% of SCARKO mice) due to a failure to progress beyond early meiosis. Measurement of Sertoli cell-specific transcript levels showed that about a third were independent of hormonal action on the Sertoli cell, whereas others were predominantly androgen dependent or showed redundant control by FSH and androgen. Results show that FSH and androgen act through redundant, additive, and synergistic regulation of spermatogenesis and Sertoli cell activity. In addition, the Sertoli cell retains a significant capacity for activity, which is independent of direct hormonal regulation

    Comparing compact binary parameter distributions I: Methods

    Full text link
    Being able to measure each merger's sky location, distance, component masses, and conceivably spins, ground-based gravitational-wave detectors will provide a extensive and detailed sample of coalescing compact binaries (CCBs) in the local and, with third-generation detectors, distant universe. These measurements will distinguish between competing progenitor formation models. In this paper we develop practical tools to characterize the amount of experimentally accessible information available, to distinguish between two a priori progenitor models. Using a simple time-independent model, we demonstrate the information content scales strongly with the number of observations. The exact scaling depends on how significantly mass distributions change between similar models. We develop phenomenological diagnostics to estimate how many models can be distinguished, using first-generation and future instruments. Finally, we emphasize that multi-observable distributions can be fully exploited only with very precisely calibrated detectors, search pipelines, parameter estimation, and Bayesian model inference

    Sunn Hemp as an Alternative Forage in the Texas High Plains Region

    Get PDF
    Forage production in the Texas High Plains, a semi-arid region, is critical to sustain the local cattle industry. However, the main source of water for irrigation is the highly depleted Ogallala Aquifer, making forage crop water productivity (CWP) of high importance. In this one-year study, three types of forages were cultivated under deficit irrigation treatments of 80% and 50% of full crop water use. The forages were: a non-brown midrib forage sorghum; a legume, sunn hemp; and a sorghum/sunn hemp mix. The experiment was conducted in Bushland, Texas in 2019. Treatment plots were arranged in a split plot design with four replications under a 6-span variable rate irrigation center pivot sprinkler. Above ground biomass samples were taken by hand from a 1 m2 quadrat in each of the 24 plots on Jul 23, Aug 6 for forage analysis, and on Aug 19 to assess biomass yield and CWP. Crude protein was significantly higher at the first and second cuttings in the sunn hemp monocrop, but not significantly different between irrigation levels. The final biomass yields and CWP were similar between the sorghum (23.6 Mg ha-1) and sorghum/sunn hemp (25.1 Mg ha-1) forages, irrespective of irrigation level. The sunn hemp monocrop produced significantly lower biomass (9.75 Mg ha-1), which reduced CWP

    Irreversibility and Polymer Adsorption

    Full text link
    Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the non-equilibrium layers which result. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ~ f^{-4/5}, in rather close agreement with strong physisorption experiments [H. M. Schneider et al, Langmuir v.12, p.994 (1996)].Comment: 4 pages, submitted to Phys. Rev. Let

    Mapping inspiral rates on population synthesis parameters

    Full text link
    Formation rates of compact-object binaries are often derived from population synthesis calculations. However, such calculations depend sensitively on a relatively large number of model input parameters. Given considerable uncertainty in those model parameters, the predicted inspiral rates for double compact objects relevant to gravitational-wave interferometric detectors have been shown to be are uncertain by several orders of magnitude. Typically, inspiral rates are estimated for only a small set of models with a remarkably poor coverage of the highly multi-dimensional parameter space (primarily because of limited computer resources). Here, using as an example seven population-synthesis model parameters, we show that it is possible to derive fits of double-compact-object inspiral rates dependent simultaneously on all seven parameters. We find these fits to be accurate to 50% for binary black holes and to 40% for binary neutron stars. The availability of such fits implies that (i) depending on the problem of interest, it is not necessary to complete large numbers of computationally demanding population synthesis calculations; and (ii) for the first time, the sufficient exploration of the relevant phase space and the assessment of the uncertainties involved is not limited by computational resources and becomes feasible. Finally, we have also produced a histogram of the (a priori likely) binary black hole inpsiral rate, assuming our population synthesis models are equally likely. This histogram, effectively an a priori probability distribution for the BH-BH inspiral rate, suggests that merger rate is conservatively bounded below by 10^(-8)/yr/Milky-Way-galaxy.Comment: Accepted Oct. 10 2004 for publication in Astrophysical Journa

    Non-Equilibrium in Adsorbed Polymer Layers

    Full text link
    High molecular weight polymer solutions have a powerful tendency to deposit adsorbed layers when exposed to even mildly attractive surfaces. The equilibrium properties of these dense interfacial layers have been extensively studied theoretically. A large body of experimental evidence, however, indicates that non-equilibrium effects are dominant whenever monomer-surface sticking energies are somewhat larger than kT, a common case. Polymer relaxation kinetics within the layer are then severely retarded, leading to non-equilibrium layers whose structure and dynamics depend on adsorption kinetics and layer ageing. Here we review experimental and theoretical work exploring these non-equilibrium effects, with emphasis on recent developments. The discussion addresses the structure and dynamics in non-equilibrium polymer layers adsorbed from dilute polymer solutions and from polymer melts and more concentrated solutions. Two distinct classes of behaviour arise, depending on whether physisorption or chemisorption is involved. A given adsorbed chain belonging to the layer has a certain fraction of its monomers bound to the surface, f, and the remainder belonging to loops making bulk excursions. A natural classification scheme for layers adsorbed from solution is the distribution of single chain f values, P(f), which may hold the key to quantifying the degree of irreversibility in adsorbed polymer layers. Here we calculate P(f) for equilibrium layers; we find its form is very different to the theoretical P(f) for non-equilibrium layers which are predicted to have infinitely many statistical classes of chain. Experimental measurements of P(f) are compared to these theoretical predictions.Comment: 29 pages, Submitted to J. Phys.: Condens. Matte

    Transition from inspiral to plunge for eccentric equatorial Kerr orbits

    Get PDF
    Ori and Thorne have discussed the duration and observability (with LISA) of the transition from circular, equatorial inspiral to plunge for stellar-mass objects into supermassive (105108M10^{5}-10^{8}M_{\odot}) Kerr black holes. We extend their computation to eccentric Kerr equatorial orbits. Even with orbital parameters near-exactly determined, we find that there is no universal length for the transition; rather, the length of the transition depends sensitively -- essentially randomly -- on initial conditions. Still, Ori and Thorne's zero-eccentricity results are essentially an upper bound on the length of eccentric transitions involving similar bodies (e.g., aa fixed). Hence the implications for observations are no better: if the massive body is M=106MM=10^{6}M_{\odot}, the captured body has mass mm, and the process occurs at distance dd from LISA, then S/N(m/10M)(1Gpc/d)×O(1)S/N \lesssim (m/10 M_{\odot})(1\text{Gpc}/d)\times O(1), with the precise constant depending on the black hole spin. For low-mass bodies (m7Mm \lesssim 7 M_\odot) for which the event rate is at least vaguely understood, we expect little chance (probably [much] less than 10%, depending strongly on the astrophysical assumptions) of LISA detecting a transition event with S/N>5S/N>5 during its run; however, even a small infusion of higher-mass bodies or a slight improvement in LISA's noise curve could potentially produce S/N>5S/N>5 transition events during LISA's lifetime.Comment: Submitted to PR
    corecore