The observed sample of double neutron-star (NS-NS) binaries presents a
challenge to population-synthesis models of compact object formation: the
parameters entering into these models must be carefully chosen so as to match
(i) the observed star formation rate and (ii) the formation rate of NS-NS
binaries, which can be estimated from the observed sample and the selection
effects related to the discoveries with radio-pulsar surveys. In this paper, we
select from an extremely broad family of possible population synthesis models
those few (2%) which are consistent with the observed sample of NS-NS binaries.
To further sharpen the constraints the observed NS-NS population places upon
our understanding of compact-object formation processes, we separate the
observed NS-NS population into two channels: (i) merging NS-NS binaries, which
will inspiral and merge through the action of gravitational waves within 10
Gyr, and (ii) wide NS-NS binaries, consisting of all the rest. With the subset
of astrophysically consistent models, we explore the implications for the rates
at which double black hole (BH-BH), black hole-neutron star (BH-NS), and NS-NS
binaries will merge through the emission of gravitational waves.Comment: (v1) Submitted to ApJ. Uses emulateapj.cls. 8 pages, 7 figures. (v2)
Minor textual changes in response to referee queries. Substantial additions
in appendicies, including a detailed discussion of sample multidimensional
population synthesis fit