832 research outputs found

    The impact of giving feedback in online discussions: effects of evaluative reply comments on the authors of evaluated user comments

    Get PDF
    Abstract. In online discussions, users often evaluate comments from other users. On the basis of face theory, the present study analyzed the effects of evaluative replies on the evaluated comment authors. The investigation complements existing research, which has mainly focused on effects of comments on uninvolved readers. In the experimental study presented here, disapproving evaluations provoked negative and less positive emotions, and the evaluated authors were less willing to participate in the online discussion further. The authors’ perception of face threat mediated these effects. The results contribute to face theory in computer-mediated interactions and to our understanding of online discussions with dissonant standpoints

    The flattening and the orbital structure of early-type galaxies and collisionless N-body binary disk mergers

    Get PDF
    We use oblate axisymmetric dynamical models including dark halos to determine the orbital structure of intermediate mass to massive Coma early-type galaxies. We find a large variety of orbital compositions. Averaged over all sample galaxies the unordered stellar kinetic energy in the azimuthal and the radial direction are of the same order, but they can differ by up to 40 percent in individual systems. In contrast, both for rotating and non-rotating galaxies the vertical kinetic energy is on average smaller than in the other two directions. This implies that even most of the rotating ellipticals are flattened by an anisotropy in the stellar velocity dispersions. Using three-integral axisymmetric toy models we show that flattening by stellar anisotropy maximises the entropy for a given density distribution. Collisionless disk merger remnants are radially anisotropic. The apparent lack of strong radial anisotropy in observed early-type galaxies implies that they may not have formed from mergers of disks unless the influence of dissipational processes was significant.Comment: 14 pages, 8 figures; accepted for publication in MNRA

    Monster black holes

    Full text link
    A combination of ground-based and spacecraft observations has uncovered two black holes of 10 billion solar masses in the nearby Universe. The finding sheds light on how these cosmic monsters co-evolve with galaxies.Comment: 2 pages, 1 figure, LaTeX. Published in Nature "News & Views

    Simulating magnetic fields in the Antennae galaxies

    Full text link
    We present self-consistent high-resolution simulations of NGC4038/4039 (the "Antennae galaxies") including star formation, supernova feedback and magnetic fields performed with the N-body/SPH code Gadget, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 1 nG to 100 muG. At the time of the best match with the central region of the Antennae system the magnetic field has been amplified by compression and shear flows to an equilibrium field of approximately 10 muG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly non-linear environment. We also discuss the relevance of the amplification effect for present day magnetic fields in the context of hierarchical structure formation.Comment: 18 pages, 14 figures, accepte

    Probing for evolutionary links between local ULIRGs and QSOs from NIR spectroscopy

    Full text link
    We present a study of the dynamical evolution of Ultraluminous Infrared Galaxies (ULIRGs), merging galaxies of infrared luminosity >10^12 L_sun. During our Very Large Telescope large program, we have obtained ISAAC near-infrared, high-resolution spectra of 54 ULIRGs (at several merger phases) and 12 local Palomar-Green QSOs to investigate whether ULIRGs go through a QSO phase during their evolution. One possible evolutionary scenario is that after nuclear coalescence, the black hole radiates close to Eddington to produce QSO luminosities. The mean stellar velocity dispersion that we measure from our spectra is similar (~160 km/s) for 30 post-coalescence ULIRGs and 7 IR-bright QSOs. The black holes in both populations have masses of order 10^7-10^8 M_sun (calculated from the relation to the host dispersion) and accrete at rates >0.5 Eddington. Placing ULIRGs and IR-bright QSOs on the fundamental plane of early-type galaxies shows that they are located on a similar region (that of moderate-mass ellipticals), in contrast to giant ellipticals and radio-loud QSOs. While this preliminary comparison of the ULIRG and QSO host kinematical properties indicates that (some) ULIRGs may undergo a QSO phase in their evolutionary history before they settle down as ellipticals, further data on non-IR excess QSOs are necessary to test this scenario.Comment: To appear in the "QSO Host Galaxies: Evolution and Environment" conference proceedings; meeting held in Leiden, August 200

    Content analysis in the research field of online user comments

    Get PDF

    Early-type galaxies at large galactocentric radii - I. Stellar kinematics and photometric properties

    Full text link
    We present the results of a combined analysis of the kinematic and photometric properties at large galactocentric radii of a sample of 14 low-luminosity early-type galaxies in the Fornax and Virgo clusters. From Gemini South GMOS long-slit spectroscopic data we measure radial profiles of the kinematic parameters v_{rot}, sigma, h_{3}, and h_{4} out to ~ 1 - 3 effective radii. Multi-band imaging data from the HST/ACS are employed to evaluate surface brightness profiles and isophotal shape parameters of ellipticity, position angle and discyness/boxiness. The galaxies are found to host a cold and old stellar component which extend to the largest observed radii and that is the dominant source of their dynamical support. The prevalence of discy-shaped isophotes and the radial variation of their ellipticity are signatures of a gradual gas dissipation. An early star-forming collapse appears to be the main mechanism acting in the formation of these objects. Major mergers are unlikely to have occurred in these galaxies. We can not rule out a minor merging origin for these galaxies, but a comparison of our results with model predictions of different merger categories places some constraints on the possible merger progenitors. These merger events are required to happen at high-redshift (i.e., z > 1), between progenitors of different mass ratio (at least 3:1) and containing a significant amount of gas (i.e., > 10 percent). A further scenario is that the low-luminosity galaxies were originally late-type galaxies, whose star formation has been truncated by removal of gas and subsequently the disc has been dynamically heated by high speed encounters in the cluster environment.Comment: 19 pages, 16 figures (Contact author for high resolution version of figures 1,2,3), MNRAS, accepted. The second paper of the series "Early-type galaxies at large galactocentric radii - II. Metallicity gradients and the [Z/H]-mass, [alpha/Fe] mass relations" can be found at arXiv:1006.169

    Electron-capture branch of 100Tc and tests of nuclear wave functions for double-beta decays

    Get PDF
    We present a measurement of the electron-capture branch of 100^{100}Tc. Our value, B(EC)=(2.6±0.4)×105B(\text{EC}) = (2.6 \pm 0.4) \times 10^{-5}, implies that the 100^{100}Mo neutrino absorption cross section to the ground state of 100^{100}Tc is roughly one third larger than previously thought. Compared to previous measurements, our value of B(EC)B(\text{EC}) prevents a smaller disagreement with QRPA calculations relevant to double-β\beta decay matrix elements

    Magnetic field structure due to the global velocity field in spiral galaxies

    Full text link
    We present a set of global, self-consistent N-body/SPH simulations of the dynamic evolution of galactic discs with gas and including magnetic fields. We have implemented a description to follow the evolution of magnetic fields with the ideal induction equation in the SPH part of the Vine code. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a div(B)-free description, an constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the Gadget code which includes also cleaning methods for div(B). Starting with a homogeneous seed field we find that by differential rotation and spiral structure formation of the disc the field is amplified by one order of magnitude within five rotation periods of the disc. The amplification is stronger for higher numerical resolution. Moreover, we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry for the evolution of the magnetic field.Comment: 17 pages, 18 figure
    corecore