4,888 research outputs found

    Color-flow decomposition of QCD amplitudes

    Full text link
    We introduce a new color decomposition for multi-parton amplitudes in QCD, free of fundamental-representation matrices and structure constants. This decomposition has a physical interpretation in terms of the flow of color, which makes it ideal for merging with shower Monte-Carlo programs. The color-flow decomposition allows for very efficient evaluation of amplitudes with many quarks and gluons, many times faster than the standard color decomposition based on fundamental-representation matrices. This will increase the speed of event generators for multi-jet processes, which are the principal backgrounds to signals of new physics at colliders.Comment: 23 pages, 11 figures, version to appear on Phys. Rev.

    Momentum Correlations of Charmed Pairs Produced in π−−Cu\pi^{-}-Cu Interactions at 230 GeV/c

    Get PDF
    We study the production characteristics of 557 pairs of charmed hadrons produced in π−−Cu\pi^{-}-Cu\ interactions at 230~GeV/c using a momentum estimator for charmed hadrons with missing decay products. We find, the mean value of the transverse momentum squared of the charmed pairs is =(1.98±0.11±0.09)  =(1.98\pm 0.11\pm 0.09)\; GeV2^2/c2^2, the mean rapidity difference is =0.54±0.02±0.24=0.54\pm 0.02\pm 0.24, and the mean effective mass is =(4.45±0.03±0.13)  =(4.45\pm 0.03\pm 0.13)\; GeV/c2^2. Comparing these results with the next-to-leading order QCD predictions we find an agreement for the \yd\ and \mef, whilst the measured mean value of \pts\ is significantly larger than the predicted value.Comment: 10 pages, LaTeX, 4 (pages) postscript figure

    MadEvent: Automatic Event Generation with MadGraph

    Full text link
    We present a new multi-channel integration method and its implementation in the multi-purpose event generator MadEvent, which is based on MadGraph. Given a process, MadGraph automatically identifies all the relevant subprocesses, generates both the amplitudes and the mappings needed for an efficient integration over the phase space, and passes them to MadEvent. As a result, a process-specific, stand-alone code is produced that allows the user to calculate cross sections and produce unweighted events in a standard output format. Several examples are given for processes that are relevant for physics studies at present and forthcoming colliders.Comment: 11 pages, MadGraph home page at http://madgraph.physics.uiuc.ed

    The Charm Content of W+1 Jet Events as a Probe of the Strange Quark Distribution Function

    Full text link
    We investigate the prospects for measuring the strange quark distribution function of the proton in associated WW plus charm quark production at the Tevatron. The W+cW+c quark signal produced by strange quark -- gluon fusion, sg→W−csg\rightarrow W^-c and sˉg→W+cˉ\bar sg\rightarrow W^+\bar c, is approximately 5\% of the inclusive W+1W+1 jet cross section for jets with a transverse momentum pT(j)>10p_T(j)>10~GeV. We study the sensitivity of the WW plus charm quark cross section to the parametrization of the strange quark distribution function, and evaluate the various background processes. Strategies to identify charm quarks in CDF and D\O \ are discussed. For a charm tagging efficiency of about 10\% and an integrated luminosity of 30~pb−1^{-1} or more, it should be possible to constrain the strange quark distribution function from W+cW+c production at the Tevatron.Comment: submitted to Phys. Lett. B, Latex, 12 pages + 4 postscript figures encoded with uufile, FSU-HEP-930812, MAD/TH/93-6, MAD/PH/788. A postscript file with text and embedded figures is available via anonymous ftp at hepsg1.physics.fsu.edu, file is /pub/keller/fsu-hep-930812.p

    Monte Carlo studies of the jet activity in Higgs + 2 jet events

    Get PDF
    Tree-level studies have shown in the past that kinematical correlations between the two jets in Higgs+2-jet events are direct probes of the Higgs couplings, e.g. of their CP nature. In this paper we explore the impact of higher-order corrections on the azimuthal angle correlation of the two leading jets and on the rapidity distribution of extra jets. Our study includes matrix-element and shower MC effects, for the two leading sources of Higgs plus two jet events at the CERN LHC, namely vector-boson and gluon fusion. We show that the discriminating features present in the previous leading-order matrix element studies survive.Comment: 12 pages, 10 figures. Version to appear on JHEP. Figs. 5-8 replaced with colour version

    Small-x Physics with the ALICE experiment at the CERN-LHC

    Full text link
    High energy p-p, p-Pb and Pb-Pb collisions at the CERN-LHC offer unprecedented opportunities for studying wide variety of physics at small Bjorken-x. Here we discuss capabilities of the ALICE experiment at the CERN-LHC for probing small-x QCD physics. A new forward electromagnetic calorimeter is being proposed as an ALICE upgrade to explore the small-x region in more detail.Comment: Prepared for the Workshop on "Saturation, the Color Glass Condensate and Glasma: What Have we Learned from RHIC?" - to be published in Nucl. Phys.

    Calculation of HELAS amplitudes for QCD processes using graphics processing unit (GPU)

    Get PDF
    We use a graphics processing unit (GPU) for fast calculations of helicity amplitudes of quark and gluon scattering processes in massless QCD. New HEGET ({\bf H}ELAS {\bf E}valuation with {\bf G}PU {\bf E}nhanced {\bf T}echnology) codes for gluon self-interactions are introduced, and a C++ program to convert the MadGraph generated FORTRAN codes into HEGET codes in CUDA (a C-platform for general purpose computing on GPU) is created. Because of the proliferation of the number of Feynman diagrams and the number of independent color amplitudes, the maximum number of final state jets we can evaluate on a GPU is limited to 4 for pure gluon processes (gg→4ggg\to 4g), or 5 for processes with one or more quark lines such as qqˉ→5gq\bar{q}\to 5g and qq→qq+3gqq\to qq+3g. Compared with the usual CPU-based programs, we obtain 60-100 times better performance on the GPU, except for 5-jet production processes and the gg→4ggg\to 4g processes for which the GPU gain over the CPU is about 20

    Multi-gluon helicity amplitudes with one off-shell leg within high energy factorization

    Get PDF
    Basing on the Slavnov-Taylor identities, we derive a new prescription to obtain gauge invariant tree-level scattering amplitudes for the process g*g->Ng within high energy factorization. Using the helicity method, we check the formalism up to several final state gluons, and we present analytical formulas for the the helicity amplitudes for N=2. We also compare the method with Lipatov's effective action approach.Comment: 25 pages, quite a few figures, an appendix added, typos correcte
    • …
    corecore