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Abstract We use a graphics processing unit (GPU) for fast
calculations of helicity amplitudes of quark and gluon scat-
tering processes in massless QCD. New HEGET (HELAS
Evaluation with GPU Enhanced Technology) codes for
gluon self-interactions are introduced, and a C++ program
to convert the MadGraph generated FORTRAN codes into
HEGET codes in CUDA (a C-platform for general purpose
computing on GPU) is created. Because of the prolifera-
tion of the number of Feynman diagrams and the number
of independent color amplitudes, the maximum number of
final state jets we can evaluate on a GPU is limited to 4 for
pure gluon processes (gg → 4g), or 5 for processes with one
or more quark lines such as qq → 5g and qq → qq + 3g.
Compared with the usual CPU-based programs, we obtain
60–100 times better performance on the GPU, except for
5-jet production processes and the gg → 4g processes for
which the GPU gain over the CPU is about 20.

1 Introduction

In our previous report [1] we introduced a C-language [2]
version of the HELAS codes [3, 4], HEGET (HELAS
Evaluation with GPU Enhanced Technology), which can
be used to compute helicity amplitudes on a GPU (Graph-
ics Processing Unit). Encouraging results with 40–150 times
faster computation speed over the CPU performance were
obtained for pure QED processes, qq → nγ , for n = 2 to 8
in pp collisions.
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In this paper, we extend our study to QCD processes with

massless quarks and gluons. The HEGET routines for mass-

less quarks and gluons are identical to those of quarks and

photons introduced in [1], and the qqg vertex function struc-

ture is also the same as the qqγ functions. The only new ad-

ditional routines are those for ggg and gggg vertices. For the

QED processes studied in Ref. [1], we found that the present

CUDA compiler cannot process qq → 6γ amplitude with

6! ≈ 700 Feynman diagrams, and we need to subdivide the

HEGET codes into small pieces for 6γ and 7γ processes. In

the case of 8γ production with 8! ≈ 4 × 104 Feynman dia-

grams, we have not been able to compile the program even

after subdivision into small pieces. We also encountered se-

rious slow down when the program accesses global memory

during the parallel processing period. Therefore, our con-

cern for evaluating the QCD processes on a GPU is the pro-

liferation of the number of diagrams, as well as the number

of independent color amplitudes which come with different

color weights.

The paper is organized as follows. In Sect. 2, we present

the cross section formula for n-jet production processes in

pp collisions in the quark-parton model, or in the leading

order of perturbative QCD with scale-dependent parton dis-

tribution functions (PDF’s). In Sect. 3, we review briefly the

structure of GPU computing by using HEGET codes, and

give basic parameters of the GPU and CPU machines used

in this analysis. In Sect. 4, we introduce new HEGET func-

tions for ggg and gggg vertices. Section 5 gives our results

and Sect. 6 summarizes our findings. Appendix lists all the

new HEGET codes introduced in Sect. 4.
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2 Physics process

2.1 n-jet production in pp collisions

The cross section for n-jet production processes can be ex-
pressed as

dσ =
∑

{a,b}

∫∫
dxa dxb Da/p (xa,Q)Db/p (xb,Q) dσ̂ (ŝ),(1)

where Da/p and Db/p are the scale (Q) dependent parton
distribution functions (PDF’s), xa and xb are the momentum
fractions of the partons a and b, respectively, in the right-
and left-moving protons. For the total pp collision energy
of

√
s,

ŝ = sxaxb, (2)

gives the invariant mass squared of the hard collision process

a + b → 1 + 2 + · · · + n. (3)

The subprocess cross section is computed in the leading or-
der as

dσ̂ (ŝ) = 1

2ŝ

1

2 · 2

∑

λi

1

nanb

∑

ci

∣∣Mci

λi

∣∣2
dΦn, (4)

where

dΦn = (2π)4 δ4

(
pa + pb −

n∑

i=1

pi

)
n∏

i=1

d3pi

(2π)32ωi

, (5)

is the invariant n-body phase space, λi are the helicities of
the initial and final partons, na and nb are the color degree of
freedom of the initial partons, a and b, respectively, and ci

represents the color indices of the initial and final partons.
When there are more than one gluons or identical quarks
in the final states, an appropriate statistical factor should be
multiplied on the phase space dΦn in (5).

The Helicity amplitudes for the process (3)

a(pa,λa, ca) + b(pb,λb, cb)

→ 1(p1, λ1, c1) + · · · + n(pn,λn, cn) (6)

can be expressed as

Mci

λi
=

∑

l∈diagram

(Mλi
)
ci

l (7)

where the summation is over all the Feynman diagrams. The
subscripts λi stand for a given combination of helicities (±1
for both quarks and gluons in the HELAS convention [3, 4]),
and the subscripts ci correspond to a set of color indices (1,
2, 3 for flowing-IN quarks, 1,2,3 for flowing-OUT quarks,

and 1 to 8 for gluons). In MadGraph [5] the amplitudes are
expanded as

Mci

λi
=

∑

α

T ci
α (Jλi

)α (8)

in the color bases T
ci
α which are made from the SU(3) gen-

erators in the fundamental representation [6]
The color factors are computed as

Nαβ = 1

nanb

∑

ci

(
T ci

α

)(
T

ci

β

)∗ (9)

where na,b = 3 for q and q , na,b = 8 for gluons, and the
summation is over all {ci} = {ca, cb, c1, . . . , cn}. The color
sum-averaged square amplitudes are computed as

∑

ci

∣∣Mci

λi

∣∣2 =
∑

a,b

(Jλi
)α Nαβ(Jλi

)∗β. (10)

The cross sections are then expressed as

dσ̂ (ŝ) = 1

2ŝ

∑

λi

∑

ci

∣∣Mci

λi

∣∣2 dΦn, (11)

where we introduce the helicity sum-average symbol as

∑

λi

≡ 1

2

1

2

∑

λi

. (12)

In this paper the following three types of multi-jet pro-
duction processes are computed:

gg → gg,ggg,gggg, (13a)

uu → gg,ggg,gggg,ggggg, (13b)

uu → uu,uug,uugg,uuggg. (13c)

The number of contributing Feynman diagrams and the
number of color bases for the above processes are summa-
rized in Table 1, which includes those for the process, gg →
5g. We note here that the number of diagrams (7245) for
gg → 5g exceeds that of the uu → 7γ process (7! ≈ 5040),
for which we could run the converted MadGraph codes on
a GPU, only after division into small pieces [1]. In fact, we
have not been able to run the gg → 5g program on GPU
even after dividing the program into more than 100 pieces;
as explained in Sect. 5.4.

Proliferation of the number of independent color basis
vectors is also a serious concern for GPU computing, since
the color matrix N of (9) has m(m + 1)/2 elements when
there are m independent basis vectors T

ci
a . For example, the

process uu → uuggg has m = 240 color basis vectors from
Table 1, and the matrix has 3 × 104 elements. The matrix
exceeding 16000 elements cannot be stored in the 64 kB
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Table 1 The number of Feynman diagrams and the color bases for QCD processes studied in this paper

No. of jets gg → gluons uu → gluons uu → uu + gluons

in the final state #diagrams #colors #diagrams #colors #diagrams #colors

2 6 6 3 2 2 2

3 45 24 18 6 10 8

4 510 120 159 24 76 40

5 7245 720 1890 120 786 240

constant memory, while storing it in the global memory will
result in serious loss of efficiency in parallel computing.
Therefore, the method to handle summation over color de-
grees of freedom is a serious concern in GPU computing.

2.2 Selection criteria for jets

Total and differential cross sections of the processes (13) in
pp collisions at

√
s = 14 TeV are computed in this paper.

We introduce final state cuts for all the jets as follows:

|ηi | < ηcut = 2.5, (14a)

pTi > pcut
T = 20 GeV, (14b)

pTij > pcut
T = 20 GeV, (14c)

where ηi and pTi are the rapidity and the transverse mo-
mentum of the i-th jet, respectively, in the pp collisions rest
frame along the right-moving (pz = |p|) proton momentum
direction, and pTij is the relative transverse momentum [7]
between the jets i and j defined by

pTij ≡ min(pTi , pTj )�Rij , (15a)

�Rij =
√

�η2
ij + �φ2

ij . (15b)

Here �Rij measures the boost-invariant angular separation
between the jets.

As for the parton distribution function (PDF), we use the
set CTEQ6L1 [8] and the factorization scale is chosen to be
the cut-off pT value, Q = pcut

T = 20 GeV. The QCD cou-
pling constant is also fixed as

αs = αs(Q = 20 GeV)MS = 0.171, (16)

which is obtained from the MS coupling at Q = mZ ,
αs(mZ)MS = 0.118 [9] by using the NLO renormalization
group equations with 5-flavors.

3 Computation on the GPU

3.1 GPU and its host PC

For the computation of the cross sections of QCD n-jet pro-
duction processes we use the same GPU and host PC as

in the previous report [1]. In particular we use a GeForce
GTX280 by NVIDIA [10] with 30 Streaming Multiproces-
sors (SM) where each SM has 8 Streaming Processors (SP),
whose parameters are summarized in Table 2. It is controlled
by a Linux PC with Fedora 8 on a CPU whose properties are
summarized in Table 3.

Programs which are used for the computation of the cross
sections are developed with the CUDA [2] (ver.2.1) environ-
ment introduced by NVIDIA [10] for general purpose GPU
computing. All programs which are executed on the CPU are
compiled by using gcc4.1 with the compile option of -O3.

3.2 Program structure

Our program computes the total cross sections and distribu-
tions of the QCD n-jet production processes via the follow-
ing procedure:

Table 2 Parameters of GeForce GTX280

Number of 30

Streaming Multiprocessors

Number of Streaming Processors 240

Total amount of 1 GB

global memory

Total amount of 64 kB

constant memory

Total amount of shared 16 kB

memory per block

Total number of registers 16 k

available per block

Clock rate 1296 MHz

Table 3 Host PC environment

CPU Core2Duo 3 GHz

L2 Cache 6 MB

Memory 4 GB

Bus Speed 1.333 GHz

OS Fedora 8 (64 bit)
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1. initialization of the program,
2. random number generation for multiple phase-space

points {pa,pb,p1, . . . , pn} and helicities {λi} on the
CPU,

3. transfer of random numbers to the GPU,
4. generation of helicities and momenta of initial and final

partons using random numbers, and compute amplitudes
(Jλi

)a of (8) for all the color bases on the GPU,
5. multiplying the amplitudes and their complex conjugate

with the color matrix Nab of (9) and summing them up as
in (10), and multiply the PDF’s of the incoming partons
on the GPU,

6. transferring momenta and helicities for external particles,
computed weights and the color summed squared ampli-
tudes to the CPU, and

7. summing up all values to obtain the total cross section
and distributions on the CPU.

Program steps between the generation of random num-
bers (2) and the summation of computed cross sections (7)
are repeated until we obtain sufficient statistics for the cross
section and all distributions.

3.3 Color matrix calculation

In order to compute the cross sections of the QCD multi-jet
production processes, multiplications of the large color ma-
trix Nab of (9), the vector of color-bases amplitudes (Jλi)α
of (8) and its complex conjugate have to be performed,
as in (10). For large n-jet processes, like gg → 4 gluons,
uu → 5 gluons and uu → uu + 3 gluons, the dimensions
of color matrices exceed 100, and the number of multipli-
cation becomes larger than 104. These matrices cannot be
stored in the constant memory (64 kB for the GTX280; see
Table 2) which is accessed in parallel, while storing them
in the global memory (1GB for GTX280) results in serious
slow-down of the GPU. We find that multiplications for the
color-summation in (10) can be reduced significantly as fol-
lows.

The color matrix of (9) contains many elements with the
same value. We count the number of different non-zero ele-
ments in the color matrix and find the results shown in Ta-
ble 4. We find for instance that among the 240 × (240 +
1)/2 = 28,720 elements of the color matrix for the uu →
uu + 3g process, there are only 60 unique ones.

In general, the number of different elements in the color
matrix grows linearly rather than quadratically as the num-
ber of color basis vectors grows. Since the numbers in Ta-
ble 4 are small enough, we can store them in the constant
memory which is accessed quickly by each parallel proces-
sor.

Before we arrive at the above solution adopted in this
study, we examined the possibility of summing over colors

Table 4 Number of different non-zero elements in the color matrix
of (9)

No. of jets gg → gluons uu → gluons uu → uu + gluons

2 3 2 2

3 7 4 7

4 15 9 19

5 45 24 60

via Monte Carlo. Let us briefly report, in passing, on this
exercise.

In the Monte Carlo color summation approach, we eval-
uate the matrix element Mci

λi
(7) for a given set of momenta

{pi}, helicities {λi} and colors {ci}, and sum the squared am-
plitudes over randomly generated sets of {pi, λi, ci}. This
method turns out not to be efficient because in the color ba-
sis using the fundamental representation of the SU(3) gen-
erators adopted by MadGraph, most of the basis vectors T

ci
a

vanish for a given color configuration {ci}. As an example,
gg → 4g has 5! = 120 color basis vectors (see Table 1),
which take the form

T ci
α = Tr

(
T a1T a2 · · ·T a6

)
(17)

for the configuration {ci} = (a1, a2, . . . , a6) where ai de-
notes the color index of the gluon i taking an integer value
between 1 and 8. Among the 86 ≈ 260,000 configurations,
only 12% give non-zero values. Moreover, as many as 75%
of the color configurations give vanishing results for all the
120 basis vectors. Although the efficiency can be improved
by changing the color basis, we find that our solution of eval-
uating the exact summation over colors is superior to the
Monte Carlo summation method for all the processes which
we report in this paper.

3.4 VVV: three vector boson vertex

4 New HEGET functions

The HEGET functions for massless quarks and gluons are
the same as those introduced in the previous report [1]. The
qqg vertex functions are identical to the qqγ functions of
Ref. [1] except for the coupling constant;

eQq → gsT
a

ij̄
(18)

for the vertex

Lqqg = −gsT
a

ij̄
Aa

μ(x)qī(x)γμqj (x) (19)

where gs = √
4παs is the strong coupling constant and T a

ij̄

is an SU(3) generator in the fundamental representation.
For example, the qqg vertex function is computed by the
HEGET function iovxx0 as
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Table 5 List of the new vertex
functions in HEGET Vertex Inputs Output HEGET Function HELAS Subroutine

VVV VVV Amplitude vvvxxx VVVXXX

VV V jvvxx0 JVVXXX

VVVV GGGG Amplitude ggggxx GGGGXX

GGG G jgggx0 JGGGXX

iovxx0(cmplx* fi, cmplx* fo, cmplx* vc,

float* g, cmplx vertexvertexvertex)

(20)

where the coupling constants are

g[0] = g[1] = gs (21)

following the convention of MadGraph [5] and the color am-
plitude is1

−T a

ij̄
(vertexvertexvertex). (22)

In the rest of this section, we introduce new HEGET
functions for three-vector boson (VVV) and four-vector bo-
son (VVVV) vertices. All the new HEGET functions are
listed in Table 5, and their contents are given in Appendix.
Also shown in Table 5 is the correspondence between the
HEGET functions and the HELAS subroutines [3, 4].

For the ggg vertex

Lggg = gsf
abc

(
∂μAaν(x)

)
Ab

μ(x)Ac
ν(x) (23)

we introduce two HEGET functions, vvvxxx and jvvxx0.
They correspond to HELAS subroutines, VVVXXX, and
JVVXXX, respectively.

The HEGET function vvvxxx (A.1.1) computes the
complex amplitude (vertexvertexvertex) from three gluon wave func-
tions ga, gb and gc each carrying the color a, b and c,
respectively. The color amplitude corresponding to the La-
grangian (23) is

if abc(vertexvertexvertex) (24)

A factor of i appears because the original HELAS subrou-
tine GGGXXX is identical to the W3WXXX subroutine [3, 4]
that computes the WWγ and WWZ vertices with real cou-
pling constants.

The HEGET function jvvxxx (A.1.2) computes the off-
shell wave function jjjμ(c;ab) of a gluon with color index
c made from two gluon wave functions ga and gb, each

1The sign of the color amplitudes (22) and (24) follows the sign of the
Lagrangian terms (19) and (23), respectively. MadGraph [5] adopts the
Lagrangian with the opposite sign, that is, (gs)MadGraph = −gs . This
sign difference is absorbed by the conventions (22) and (24).

carrying the color a and b, respectively. The off-shell gluon
wave function is associated with the color factor

if abcjjjμ(c;a, b), (25)

according to the Lagrangian (23).

4.1 VVVV: four vector boson vertex

For the gggg vertex

Lgggg = −g2
s

4
f abef cdeAaμ(x)Abν(x)Ac

μ(x)Ad
ν (x) (26)

we introduce two HEGET functions, ggggxx and jgggx0,
listed in Table 5. They correspond to HELAS subroutines,
GGGGXX and JGGGXX, respectively.

The HEGET function ggggxx (A.2.1) computes the
complex amplitude vvv(ab, cd) from 4 gluon wave functions
ga, gb, gc and gd each carrying the color a, b, c and d ,
respectively, when the associated color factor is f abef cde .
The vertex amplitude for the Lagrangian (26) is obtained by
calling the function three times such that the color amplitude
becomes

f abef cdevvv(ab, cd) + f acef dbevvv(ac, db)

+ f adef bcevvv(ad, bc). (27)

Finally the HEGET function jgggxx (A.2.2) computes
the off-shell wave function jjjμ(d;ab, c) of a gluon with
color d made from three gluon wave functions ga, gb and
gc, each carrying the color index of a, b and c, respectively,
when the associated color factor is f abef cde . The off-shell
wave function from the Lagrangian (26) is obtained by call-
ing the function 3 times as

f abef cdejjjμ(d;ab, c) + f acef dbejjjμ(d; ca, b)

+ f adef bcejjjμ(d;bc, a), (28)

just as in (27) for the amplitude.

5 Results

5.1 Comparison of total cross sections

We have validated all the HEGET functions by compar-
ing the helicity amplitudes of each process for many phase



518 Eur. Phys. J. C (2010) 70: 513–524

Table 6 Total cross sections for
gg → gluons [fb] No. of jets HEGET Bases MadGraph/MadEvent

2 3.1929 ± 0.0010 3.1928 ± 0.0010 3.1902 ± 0.0076 ×1011

3 2.6201 ± 0.0023 2.6136 ± 0.0036 2.6221 ± 0.0061 ×1010

4 5.813 ± 0.020 5.8140 ± 0.0095 5.776 ± 0.034 ×109

Table 7 Total cross sections for
uu → gluons [fb] No. of jets HEGET Bases MadGraph/MadEvent

2 2.8981 ± 0.0007 2.8969 ± 0.0006 2.8991 ± 0.0073 ×107

3 1.8420 ± 0.0012 1.8388 ± 0.0018 1.8421 ± 0.0077 ×106

4 4.465 ± 0.022 4.496 ± 0.017 4.399 ± 0.038 ×105

5 1.566 ± 0.057 1.589 ± 0.018 1.542 ± 0.039 ×105

Table 8 Total cross sections for
uu → uu + gluons [fb] No. of jets HEGET Bases MadGraph/MadEvent

2 2.6715 ± 0.0014 2.6743 ± 0.0011 2.6689 ± 0.0047 ×108

3 5.897 ± 0.004 5.889 ± 0.010 5.871 ± 0.015 ×107

4 2.7754 ± 0.0130 2.7500 ± 0.0083 2.748 ± 0.042 ×107

5 1.513 ± 0.024 1.560 ± 0.013 1.513 ± 0.024 ×106

space points and for all helicity combinations between those
computed on GPU with the HEGET functions and those
computed on CPU with the FORTRAN version of HELAS
subroutines. For the phase space generation, we use Mad-
Graph/MadEvent [5] and an independent FORTRAN pro-
gram which calculates total cross section and kinemati-
cal distributions with the Monte Carlo integration program
BASES [11] as references. Due to the limited support for the
double precision computation capabilities on the GPU, the
whole computations with HEGET on a GTX280 are done
with single precision, while the other programs with HELAS
in FORTRAN compute cross sections with double precision.

For the calculation of the n-jet production cross sec-
tions we use the same physics parameters as the MadGraph/
MadEvent for all programs, and the same final state cuts
of (14) for all processes and all programs. The parton dis-
tribution functions of CTEQ6L1 [8] and the same factoriza-
tion and renormalization scales, Q = pcut

T = 20 GeV, are
also used.

Results for the computation of the total cross sections
are summarized in Tables 6, 7 and 8 for gg → gluons,
uu → gluons and uu → uu + gluons, respectively. We find
the results obtained by the HEGET functions agree with
those from the other programs within the statistics of gen-
erated number of events.

We note that multi-jet events that satisfy the final state
cuts of (14), where all jets are in the central region in |η| <

2.5 (14a) and their transverse momentum about the beam
direction (14b) and among each other (14c) greater than 20
GeV, are dominated by pure gluonic processes in Table 6.

The cross sections for uu → ng process in Table 7 are small
because of uu annihilation. We note that the crossing-related
non-annihilation processes, ug → u+(n−1)g, have exactly
the same number of diagrams and color bases, hence can be
evaluated with essentially the same amount of computation
time.

5.2 Comparison of the processing time

As already described in our previous report [1], we prepare
two versions of the programs in the same structure for the
computation of the total cross sections. One is written in
CUDA, a C-based language, and can be executed on the
GPU. The other is written in C and can be executed on the
CPU. Using a standard C library function we measure the
event process time for CPU and for GPU as follows. In order
to include the data transfer time between CPU and GPU as
an integral part of the event process time by GPU, we mea-
sure the interval between the time when CPU starts transfer-
ring random numbers to the GPU and the time when the last
result from GPU is received by the CPU. This time interval
is compared to the interval between the corresponding times
in the CPU computation. The fraction of this interval in the
total execution time of the CPU program amounts to 98.5%
for uu → 2g and 99.96% for uu → 5g.

In Fig. 1, the measured process time in µsec for one
event of n-jet production processes is shown for the GPU
(GTX280) and the CPU (Linux PC with Fedora 8). They
are plotted against the number of jets in the final state. Be-
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Fig. 1 Processing time for
GPU and CPU

cause the process time per event on the GPU depends [1]
strongly on the number of allocated registers at the compi-
lation by the CUDA and the size of thread blocks at the ex-
ecution time, we scan combination of these parameters for
the fastest event process time on the GPU.

The upper three lines in Fig. 1 show the event process
times on the CPU. They correspond to gg → n-jets denoted
as gg, uu → n-jets as uu and uu → uu + n-jets as uu, re-
spectively. For processes with small numbers of jets, e.g.
njet = 2, the event process times for different processes are
all around 4.5 µs. This is probably because they are domi-
nated by computation steps other than the amplitude calcu-
lations, such as computations of the PDF factors, which are
common to all physics processes. When the number of jets
becomes larger, the event process time for the same number
jets in the final states is roughly proportional to the number
of diagrams of each process listed in Table 1.

The lower three lines in Fig. 1 show the event process
times on a GTX280. They also correspond to gg → n-jets
denoted as gg, uu → n-jets as uu and uu → uu + n-jets
as uu, respectively. As the number of jets becomes larger,
the process time on the GPU grows more rapidly than that
on the CPU. For the njet = 4 case, the event process time
of gg → 4 gluons is larger than the expected time from
the proportionality to the number of diagrams of the other
processes, uu → 4 gluons and uu → uu+2 gluons. In other
words, the event process time on GPU grows faster than
what we expect from the growth of the number of Feynman
diagrams.

For instance, the event process times ratio for gg → 4g

and gg → 3g on the CPU are roughly 120 µs/14 µs ∼ 8.6,
which roughly agrees with the ratio of the numbers of Feyn-
man diagrams (Table 1), 510/45 ∼ 11. The corresponding
ratio on GPU is 3.8 µs/0.1 µs ∼ 38, which is significantly
larger.

For the same number of jets, we also observe that the
event process times on the CPU are roughly proportional to
the number of diagrams. For njet = 4, the ratio of the process
times for gg → 4g to uu → 4g are about 120 µs/29 µs ∼ 4.1
on CPU, as compared to the ratio of the number of Feynman
diagrams in Table 1, 510/159 ∼ 3.2. The same applies to
njet = 5 between uu → 5g and uu → uuggg, where Feyn-
man diagrams have the ratio 1890/786 ∼ 2.4 from Table 1,
and the event process time on the CPU gives 300 µs/180 µs
∼ 1.7, also in rough agreement.

On the other hand, the event process times on the GPU
for gg → 4g and uu → 4g have a ratio 3.8 µs/0.45 µs ∼ 8.4
which is much larger than the ratio of the diagram numbers;
while that for uu → 5g and uu → uuggg has the ratio of
11 µs/9.5 µs ∼ 1.15. Although we do not fully understand
the above behavior of the event process time on the GPU,
we find that they tends to scale as the product of the number
of Feynman diagrams and the number of color bases, while
the event process times on the CPU are not sensitive to the
latter. This is probably because as the number of color bases
grows, more amplitudes, (Jλi)α in (8), should be stored and
then called to compute the color sum, (10). These obser-
vations tell us that the relative weight of the color matrix
computation in the GPU computing is very significant even
after identifying the independent elements of the color ma-
trix Nαβ in (9) as listed in Table 4.

5.3 Comparison of performance of GPU and CPU

The ratios of event process times between CPU and GPU
are shown in Fig. 2. Three lines correspond to gg → n-jets
denoted as gg, uu → n-jets as uu and uu → uu + (n − 2)-
jets as uu, respectively. The performance ratios exceed 100
for the processes with small numbers of jets (njet ≤ 3) in the
final state. For njet = 4 and 5, the performance ratios gradu-
ally drop to less than 40. For processes with large numbers
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Fig. 2 Ratio of processing
time. Time on CPU divided by
time on GPU

of color bases, the ratios are smaller. For gg → 4 gluons,
which has 120 color bases, the ratio is about 30, and for
uu → uu + 3 gluons, which has 240 color bases, the ratio
becomes about 20.

5.4 Note on gg → 5g study

Among five-jet production processes we have not been able
to run the program for gg → 5g. This process has 7245
diagrams and 720 color basis vectors. In order to compile
the program for the computation of this process, we use the
technique developed in the previous study [1]. By dividing
the program into about 140 pieces we were able to compile
the gg → 5g program. Compilation takes about 90 min on
a Linux PC. The total size of the compiled program exceeds
200 MB, and we were not able to execute this compiled pro-
gram on a GTX280.

6 Summary

We have shown the results of our attempt to evaluate QCD
multi-jet production processes at hadron colliders on a
GPU [10], Graphic Processing Unit, following the encour-
aging results obtained for QED multi-photon production
processes in Ref. [1].

Our achievements and findings may be summarized as
follows.

– A new set of HEGET functions written in CUDA [2],
a C-language platform developed by NVIDIA for gen-
eral purpose GPU computing, are introduced to compute
triple and quartic gluon vertices. The HEGET routines for
massless quarks were introduced in Ref. [1], and the rou-
tine for photons [1] can be used for gluons. In addition,
the HEGET functions for the qqg vertex are the same as
those for the qqγ vertex introduced in Ref. [1].

– The HELAS amplitude code generated by MadGraph [5]
is converted to a CUDA program which calls HEGET
functions for the following three type of subprocesses:
gg → ng (n ≤ 5), uu → ng (n ≤ 5), and uu → uu + ng

(n ≤ 3).
– Summation over color degrees of freedom was performed

on a GPU by identifying the same valued elements of the
color matrix of (9), in order to reduce the memory size.

– All the HEGET programs for up to 5 jets passed the
CUDA compiler after division into small pieces. How-
ever, we could not execute the program for the process
gg → 5g. Accordingly, comparisons of performance be-
tween GPU and CPU are done for the multi-jet production
processes up to 5 jets, excluding the purely gluonic sub-
process.

– Event process times of the GPU program on GTX280 are
more than 100 times faster than the CPU program for all
the processes up to 3-jets, while the gain is reduced to
60 for 4-jets with one or two quark lines, and to 30 for
the purely gluonic process. It further goes down to 30 and
20 for 5-jet production processes with one and two quark
lines, respectively.

– We find that one cause of the rapid loss of GPU gain
over CPU as the number of jets increases is the growth
in the number of color bases. GPU programs slow down
for processes with larger numbers of color basis vectors,
while the performance of the CPU programs is not af-
fected much.

– All computations on the GPU were performed with sin-
gle precision accuracy. A factor of 2.5 to 4 slower perfor-
mance is found for double precision computation on the
GPU.2

2Please refer to Ref. [1] for the comparison of performances between
single precision and double precision computations.
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Appendix A: Additional HEGET functions

In the appendix, we list the HEGET functions introduced in
this report. They are for the ggg and gggg vertices which do
not have counterparts in QED. Together with the HEGET
functions listed in Ref. [1], the quark and gluon (photon)
wave functions and the qqg(qqγ ) vertices, all the QCD am-
plitudes can be computed on GPU.

A.1 Functions for the VVV vertex

For the ggg vertex

Lggg = gsf
abc

(
∂μAaν(x)

)
Ab

μ(x)Ac
ν(x) (29)

we introduce two HEGET functions, vvvxxx and jvvxx0.
They correspond to HELAS subroutines, VVVXXX, and
JVVXXX, respectively, for massless particles; see Table 5.

A.1.1 vvvxxx

The HEGET function vvvxxx (List 1 in Appendix) com-
putes the amplitude of the VVV vertex from vector boson
wave functions, whether they are on-shell or off-shell. The
function has the arguments:

vvvxxx(cmplx* ga, cmplx* gb, cmplx* gc,

float g, cmplx vertexvertexvertex)

(30)

where the inputs and the outputs are:

INPUTS:

cmplx ga[6] wavefunction of gluon with color

index, a

cmplx gb[6] wavefunction of gluon with color

index, b

cmplx gc[6] wavefunction of gluon with color

index, c

float g coupling constant of VVV vertex

OUTPUTS:

cmplx vertex amplitude of the VVV vertex (31)

The coupling constant is

g= gs (32)

in the HEGET function (30), following the convention of
MadGraph [5]. In order to reproduce the amplitudes associ-
ated with the ggg vertex Lagrangian of (29), the color factor
associated with the ggg vertex is if abc . More explicitly, the
vertex amplitude for (29) is

if abc(vertexvertexvertex) (33)

by using the output (vertexvertexvertex) in (30); see the footnote in
Sect. 3.4. Also note the HELAS convention [3, 4] of us-
ing the flowing-OUT momenta and quantum numbers for
all bosons.

List 1 vvvxxx.cu
#include "cmplx.h"

__device__
void vvvxxx(cmplx* ga, cmplx* gb,

cmplx* gc,
float g, cmplx&

vertex)
{

cmplx v12 = ga[0]*gb[0]
- ga[1]*gb[1] - ga[2]*gb[2] - ga[3]*

gb[3];
cmplx v23 = gb[0]*gc[0]

- gb[1]*gc[1] - gb[2]*gc[2] - gb[3]*
gc[3];

cmplx v31 = gc[0]*ga[0]
- gc[1]*ga[1] - gc[2]*ga[2] - gc[3]*

ga[3];

float pga[4];
float pgb[4];
float pgc[4];

pga[0] = ga[4].re;
pga[1] = ga[5].re;
pga[2] = ga[5].im;
pga[3] = ga[4].im;

pgb[0] = gb[4].re;
pgb[1] = gb[5].re;
pgb[2] = gb[5].im;
pgb[3] = gb[4].im;

pgc[0] = gc[4].re;
pgc[1] = gc[5].re;
pgc[2] = gc[5].im;
pgc[3] = gc[4].im;

cmplx p12 = pga[0]*gb[0]
- pga[1]*gb[1] - pga[2]*gb[2] - pga

[3]*gb[3];
cmplx p13 = pga[0]*gc[0]
- pga[1]*gc[1] - pga[2]*gc[2] - pga

[3]*gc[3];
cmplx p21 = pgb[0]*ga[0]
- pgb[1]*ga[1] - pgb[2]*ga[2] - pgb

[3]*ga[3];
cmplx p23 = pgb[0]*gc[0]
- pgb[1]*gc[1] - pgb[2]*gc[2] - pgb

[3]*gc[3];
cmplx p31 = pgc[0]*ga[0]
- pgc[1]*ga[1] - pgc[2]*ga[2] - pgc

[3]*ga[3];
cmplx p32 = pgc[0]*gb[0]
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- pgc[1]*gb[1] - pgc[2]*gb[2] - pgc
[3]*gb[3];

vertex = -(v12*(p13-p23)
+v23*(p21-p31)
+v31*(p32-p12) )*g;

return;
}

A.1.2 jvvxx0

The HEGET function jvvxx0 (List 2) computes the off-
shell vector wavefunction from the three-point gauge boson
coupling in (29). The vector propagator is given in the Feyn-
man gauge for a massless vector bosons like gluons. It has
the arguments:

jvvxx0(cmplx* ga, cmplx* gb, float g,

cmplx* jvvjvvjvv)

(34)

where the inputs and the outputs are:

INPUTS:
cmplx ga[6] wavefunction of gluon with color

index, a

cmplx gb[6] wavefunction of gluon with color
index, b

float g coupling constant of the VVV vertex

OUTPUTS:
cmplx jvv[6] vector current jμ(gc : ga,gb) which

has a color index, c

(35)

As in (24) the color amplitude for the off-shell current is

if abc(jvvjvvjvv). (36)

List 2 jvvxx0.cu
#include "cmplx.h"

__device__
void jvvxx0(cmplx* ga, cmplx* gb,

float g,
cmplx* jvv)

{
jvv[4] = ga[4] + gb[4];
jvv[5] = ga[5] + gb[5];

float p1[4];
float p2[4];
float q[4];

p1[0] = (ga[4].re);
p1[1] = (ga[5].re);
p1[2] = (ga[5].im);
p1[3] = (ga[4].im);

p2[0] = (gb[4].re);

p2[1] = (gb[5].re);
p2[2] = (gb[5].im);
p2[3] = (gb[4].im);

q[0] = -(jvv[4].re);
q[1] = -(jvv[5].re);
q[2] = -(jvv[5].im);
q[3] = -(jvv[4].im);

float s = q[0]*q[0]
-q[1]*q[1] -q[2]*q[2] -q[3]*q[3];

cmplx gab = ga[0]*gb[0]
-ga[1]*gb[1] -ga[2]*gb[2] -ga[3]*gb

[3];

cmplx sga =
(p2[0]-q[0])*ga[0] - (p2[1]-q[1])*ga

[1]
- (p2[2]-q[2])*ga[2] - (p2[3]-q[3])*ga

[3];

cmplx sgb =
- (p1[0]-q[0])*gb[0] + (p1[1]-q[1])*gb

[1]
+ (p1[2]-q[2])*gb[2] + (p1[3]-q[3])*gb

[3];

float gs = -g*(1.0f/s);

jvv[0] = gs*((p1[0]-p2[0])*gab
+ sga*gb[0] + sgb*ga[0]);

jvv[1] = gs*((p1[1]-p2[1])*gab
+ sga*gb[1] + sgb*ga[1]);

jvv[2] = gs*((p1[2]-p2[2])*gab
+ sga*gb[2] + sgb*ga[2]);

jvv[3] = gs*((p1[3]-p2[3])*gab
+ sga*gb[3] + sgb*ga[3]);

return;
}

A.2 Functions for the VVVV vertex

For the gggg vertex

Lgggg = −g2
s

4
f abef cdeAaμ(x)Abν(x)Ac

μ(x)Ad
ν (x) (37)

we introduce two HEGET functions, ggggxx and jgggx0,
listed in Table 5. They correspond to HELAS subroutines,
GGGGXX and JGGGXX, respectively, for massless particles.

A.2.1 ggggxx

The HEGET function ggggxx (List 3) computes the ampli-
tude from 4 gluon wave functions ga, gb, gc and gd, each
with the color index a, b, c and d , respectively, when the
associated color factor is f abef cde, whether the gluons are
on-shell or off-shell. The function has the arguments:

ggggxx(cmplx* ga, cmplx* gb, cmplx* gc,

cmplx* gd, float gg, cmplx vertex)

(38)
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where the inputs and the outputs are:

INPUTS:
cmplx ga[6] wavefunction of gluon with color

index, a

cmplx gb[6] wavefunction of gluon with color
index, b

cmplx gc[6] wavefunction of gluon with color
index, c

cmplx gd[6] wavefunction of gluon with color
index, d

float gg coupling constant of VVVV vertex

OUTPUTS:
cmplx vertex amplitude of the VVVV vertex with the

color factor f abef cde.

(39)

The coupling constant gg for the gggg vertex is

gg= g2
s . (40)

In order to obtain the complete amplitude, the function must
be called three times (once for each color structure) with the
following permutations:

ggggxx(ga,gb,gc,gd,gg,v1v1v1) (41a)

ggggxx(ga,gc,gd,gb,gg,v2v2v2) (41b)

ggggxx(ga,gd,gb,gc,gg,v3v3v3) (41c)

The color amplitudes are then expressed as

f abef cde(v1v1v1) + f acef dbe(v2v2v2) + f adef bce(v3v3v3). (42)

List 3 ggggxx.cu
#include "cmplx.h"

__device__
void ggggxx(cmplx* ga, cmplx* gb,

cmplx* gc,
cmplx* gd, float gg, cmplx&

vertex)
{

cmplx gad = ga[0]*gd[0]
-ga[1]*gd[1]-ga[2]*gd[2]-ga[3]*gd[3];

cmplx gbc = gb[0]*gc[0]
-gb[1]*gc[1]-gb[2]*gc[2]-gb[3]*gc[3];

cmplx gac = ga[0]*gc[0]
-ga[1]*gc[1]-ga[2]*gc[2]-ga[3]*gc[3];

cmplx gbd = gb[0]*gd[0]
-gb[1]*gd[1]-gb[2]*gd[2]-gb[3]*gd[3];

vertex = gg*(gad*gbc-gac*gbd);

return;
}

A.2.2 jgggx0

The HEGET function jgggx0 (List 4) computes an off-
shell gluon current from the four-point gluon coupling, in-
cluding the gluon propagator in the Feynman gauge. It has
the arguments:

jgggx0(cmplx* ga, cmplx* gb, cmplx* gc,

float gg, cmplx* jggg)

(43)

where the inputs and the outputs are:

INPUTS:
cmplx ga[6] wavefunction of gluon with color

index, a

cmplx gb[6] wavefunction of gluon with color
index, b

cmplx gc[6] wavefunction of gluon with color
index, c

float gg coupling constants of the VVVV vertex.

OUTPUTS:
cmplx jggg[6] vector current jjjμ(d : ab, c) which has

the color index d associated with the
color factor f abef cde.

(44)

The function (43) should be called three times as

jgggx0(ga,gb,gc,gg,j1j1j1) (45a)

jgggx0(gc,ga,gb,gg,j2j2j2) (45b)

jgggx0(gb,gc,ga,gg,j3j3j3) (45c)

as in (41), and the off-shell gluon current with the color in-
dex d is obtained as

f abef cde(j1j1j1) + f acef dbe(j2j2j2) + f adef bce(j3j3j3). (46)

List 4 jgggx0.cu
#include "cmplx.h"

__device__
void jgggx0(cmplx* ga, cmplx* gb,

cmplx* gc,
float gg, cmplx* jggg)

{
jggg[4] = ga[4]+gb[4]+gc[4];
jggg[5] = ga[5]+gb[5]+gc[5];

float q[4];
q[0] = -jggg[4].re;
q[1] = -jggg[5].re;
q[2] = -jggg[5].im;
q[3] = -jggg[4].im;

float fact = gg*(1.0f/(q[0]*q[0]
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- q[1]*q[1] - q[2]*q[2] - q[3]*q[3])
);

cmplx gcb = gc[0]*gb[0]
- gc[1]*gb[1] - gc[2]*gb[2] - gc[3]*gb

[3];
cmplx gac = ga[0]*gc[0]
- ga[1]*gc[1] - ga[2]*gc[2] - ga[3]*gc

[3];

jggg[0] = fact*( ga[0]*gcb - gb[0]*gac
);

jggg[1] = fact*( ga[1]*gcb - gb[1]*gac
);

jggg[2] = fact*( ga[2]*gcb - gb[2]*gac
);

jggg[3] = fact*( ga[3]*gcb - gb[3]*gac
);

return;
}
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