16,282 research outputs found
Estimating single molecule conductance from spontaneous evolution of a molecular contact
We present an original method to estimate the conductivity of a single
molecule anchored to nanometric-sized metallic electrodes, using a Mechanically
Controlled Break Junction (MCBJ) operated at room temperature in liquid. We
record the conductance through the metal / molecules / metal nanocontact while
keeping the metallic electrodes at a fixed distance. Taking advantage of
thermal diffusion and electromigration, we let the contact naturally explore
the more stable configurations around a chosen conductance value. The
conductance of a single molecule is estimated from a statistical analysis of
raw conductance and conductance standard deviation data for molecular contacts
containing up to 14 molecules. The single molecule conductance values are
interpreted as time-averaged conductance of an ensemble of conformers at
thermal equilibrium.Comment: 25 pages, 6 figure
The gaseous extent of galaxies and the origin of Lyman alpha absorption systems. IV: Lyman alpha absorbers arising in a galaxy group
We present new GHRS observations of Lyman alpha absorption lines associated
with a group of galaxies towards the QSO 1545+2101. We have identified eight
distinct Lyman alpha absorption features in the spectrum of QSO 1545+2101 at a
mean redshift of z=0.2648 with a velocity dispersion of 163 km/s. A group of
galaxies is detected in the vicinity of this QSO at a mean redshift of z=0.2645
and velocity dispersion 239 km/s.
The identification of discrete absorption systems indicates that they arise
in clouds of neutral hydrogen rather than in a diffuse intragroup medium. Our
analysis suggests that the Lyman alpha absorption lines are associated with
individual galaxies in the group, although a one-to-one relationship between
absorbers and galaxies is difficult to establish in such a dense environment.Comment: 16 pages, 3 figures. Accepted for publication in Ap
How to generate pentagonal symmetry using Turing systems
We explore numerically the formation of Turing patterns in a confined circular domain with small aspect ratio. Our results show that stable fivefold patterns are formed over a well defined range of disk sizes, offering a possible mechanism for inducing the fivefold symmetry observed in early development of regular echinoids. Using this pattern as a seed, more complex biological structures can be mimicked, such as the pigmentation pattern of sea urchins and the plate arrangements of the calyxes of primitive camerate crinoids
A three-dimensional view of the remnant of Nova Persei 1901 (GK Per)
We present a kinematical study of the optical ejecta of GK Per. It is based
on proper motions measurements of 282 knots from ~20 images spanning 25 years.
Doppler-shifts are also computed for 217 knots. The combination of proper
motions and radial velocities allows a unique 3-D view of the ejecta to be
obtained. The main results are: (1) the outflow is a thick shell in which knots
expand with a significant range of velocities, mostly between 600 and 1000
km/s; (2) kinematical ages indicate that knots have suffered only a modest
deceleration since their ejection a century ago; (3) no evidence for anisotropy
in the expansion rate is found; (4) velocity vectors are generally aligned
along the radial direction but a symmetric pattern of non-radial velocities is
also observed at specific directions; (5) the total Halpha+[NII] flux has been
linearly decreasing at a rate of 2.6 % per year in the last decade. The Eastern
nebular side is fading at a slower rate than the Western one. Some of the knots
displayed a rapid change of brightness during the 2004-2011 period. Over a
longer timescale, a progressive circularization and homogenization of the
nebula is taking place; (6) a kinematic distance of 400+-30 pc is determined.
These results raise some problems to the previous interpretations of the
evolution of GK Per. In particular, the idea of a strong interaction of the
outflow with the surrounding medium in the Southwest quadrant is not supported
by our data.Comment: Accepted for publication in The Astrophysical Journal (19 pages, 17
figures). Higher resolution version of this article (2.5 MB) is available at
http://www.aai.ee/~sinope/ApJ89291_liimets.pd
Tracking Curvaton(s)?
The ratio of the curvaton energy density to that of the dominant component of
the background sources may be constant during a significant period in the
evolution of the Universe. The possibility of having tracking curvatons, whose
decay occurs prior to the nucleosynthesis epoch, is studied. It is argued that
the tracking curvaton dynamics is disfavoured since the value of the curvature
perturbations prior to curvaton decay is smaller than the value required by
observations. It is also argued, in a related context, that the minimal
inflationary curvature scale compatible with the curvaton paradigm may be
lowered in the case of low-scale quintessential inflation.Comment: 20 pages, 4figure
Weber blockade theory of magnetoresistance oscillations in superconducting strips
Recent experiments on the conductance of thin, narrow superconducting strips
have found periodic fluctuations, as a function of the perpendicular magnetic
field, with a period corresponding to approximately two flux quanta per strip
area [A. Johansson et al., Phys. Rev. Lett. {\bf 95}, 116805 (2005)]. We argue
that the low-energy degrees of freedom responsible for dissipation correspond
to vortex motion. Using vortex/charge duality, we show that the superconducting
strip behaves as the dual of a quantum dot, with the vortices, magnetic field,
and bias current respectively playing the roles of the electrons, gate voltage
and source-drain voltage. In the bias-current vs. magnetic-field plane, the
strip conductance displays what we term `Weber blockade' diamonds, with vortex
conductance maxima (i.e., electrical resistance maxima) that, at small
bias-currents, correspond to the fields at which strip states of and
vortices have equal energy.Comment: 4+a bit pages, 3 figures, 1 tabl
Production cross-sections and momentum distributions of fragments from neutron-deficient 36Ar at 1.05 A.GeV
We have measured production cross sections and longitudinal momentum
distributions of fragments from neutron-deficient 36Ar at 1.05 A.GeV. The
production cross-sections show excellent agreement with the predictions of the
semiempirical formula EPAX. We have compared these results, involving extremly
neutron deficient nuclei, with model calculations to extract informa tion about
the response of these models close to the driplines. The longitudinal momentum
distributions have also been extracted and are compared with the Goldhaber and
Morrissey systematics.Comment: 16 pages, 6 figure
- …