2,119 research outputs found
Cardiac structure and function in elite Native Hawaiian and Pacific Islander Rugby Football League athletes: an exploratory study.
The aim of this exploratory study was to define the Athletes Heart (AH) phenotype in Native Hawaiian & Pacific Islander (NH&PI) Rugby Football League (RFL) athletes. Specifically, (1) to describe conventional echocardiographic indices of left ventricle (LV) and right ventricle (RV) structure and function in NH&PI RFL players and matched RFL Caucasian controls (CC) and (2) to demonstrate LV and RV mechanics in these populations. Ethnicity is a contributory factor to the phenotypical expression of the AH. There are no data describing the cardiac phenotype in NH&PI athletes. Twenty-one male elite NH&PI RFL athletes were evaluated using conventional echocardiography and myocardial speckle tracking, allowing the assessment of global longitudinal strain (ε) and strain rate (SR); and basal, mid and global radial and circumferential ε and SR. Basal and apical rotation and twist were also assessed. Results were compared with age-matched Caucasian counterparts (CC; n = 21). LV mass [42 ± 9 versus 37 ± 4 g/(m2.7)], mean LV wall thickness (MWT: 9.5 ± 0.7 and 8.7 ± 0.4 mm), relative wall thickness (RWT: 0.35 ± 0.04 and 0.31 ± 0.03) and RV wall thickness (5 ± 1 and 4 ± 1 mm, all p < 0.05) were greater in NH&PI compared with CC. LV and RV cavity dimensions and standard indices of LV and RV systolic and diastolic function were similar between groups. NH&PI demonstrated reduced peak LV mid circumferential ε and early diastolic SR, as well as reduced global radial ε. There was reduced basal rotation at 25-35% systole, reduced apical rotation at 25-40% and 60-100% systole and reduced twist at 85-95% systole in NH&PI athletes. There were no differences between the two groups in RV wall mechanics. When compared to Caucasian controls, NH&PI rugby players have a greater LV mass, MWT and RWT with concomitant reductions in circumferential and twist mechanics. This data acts to prompt further research in NH&PI athletes
Quantum algorithm and circuit design solving the Poisson equation
The Poisson equation occurs in many areas of science and engineering. Here we
focus on its numerical solution for an equation in d dimensions. In particular
we present a quantum algorithm and a scalable quantum circuit design which
approximates the solution of the Poisson equation on a grid with error
\varepsilon. We assume we are given a supersposition of function evaluations of
the right hand side of the Poisson equation. The algorithm produces a quantum
state encoding the solution. The number of quantum operations and the number of
qubits used by the circuit is almost linear in d and polylog in
\varepsilon^{-1}. We present quantum circuit modules together with performance
guarantees which can be also used for other problems.Comment: 30 pages, 9 figures. This is the revised version for publication in
New Journal of Physic
The speciation and genotyping of Cronobacter isolates from hospitalised patients
The World Health Organization (WHO) has recognised all Cronobacter species as human pathogens. Among premature neonates and immunocompromised infants, these infections can be life-threatening, with clinical presentations of septicaemia, meningitis and necrotising enterocolitis. The neurological sequelae can be permanent and the mortality rate as high as 40 – 80 %. Despite the highlighted issues of neonatal infections, the majority of Cronobacter infections are in the elderly population suffering from serious underlying disease or malignancy and include wound and urinary tract infections, osteomyelitis, bacteraemia and septicaemia. However, no age profiling studies have speciated or genotyped the Cronobacter isolates. A clinical collection of 51 Cronobacter strains from two hospitals were speciated and genotyped using 7-loci multilocus sequence typing (MLST), rpoB gene sequence analysis, O-antigen typing and pulsed- field gel electrophoresis (PFGE). The isolates were predominated by C. sakazakii sequence type 4 (63 %, 32/51) and C. malonaticus sequence type 7 (33 %, 17/51). These had been isolated from throat and sputum samples of all age groups, as well as recal and faecal swabs. There was no apparent relatedness between the age of the patient and the Cronobacter species isolated. Despite the high clonality of Cronobacter , PFGE profiles differentiated strains across the sequence types into 15 pulsotypes. There was almost complete agreement between O-antigen typing and rpoB gene sequence analysis and MLST profiling. This study shows the value of applying MLST to bacterial population studies with strains from two patient cohorts, combined with PFGE for further discrimination of strains
Seasonal variation of cardiac structure and function in the elite rugby football league athlete.
BACKGROUND: Pre-participation cardiac screening (PCS) of "Super-League" rugby football league (RFL) athletes is mandatory but may be completed at any time point. The aim of this study was to assess cardiac electrical, structural and functional variation across the competitive season. METHODS: Elite, male, RFL athletes from a single Super-League club underwent cardiac evaluation using electrocardiography (ECG), 2D echocardiography and speckle tracking echocardiography (STE) at four time points across the RFL season; (1) End pre-season (ENDPRE), (2) mid-season (MIDCOMP), (3) end-season (ENDCOMP) and (4) End off-season (ENDOFF). Training loads for each time point were also determined. One-way ANOVA with post-hoc Bonferroni were used for statistical analyses. RESULTS: Total workload undertaken by athletes was lower at both MIDCOMP and ENDCOMP compared to ENDPRE (P < 0.001). ECG patterns were normal with training-related changes that were largely consistent across assessments. Structural data did not vary across assessment points. Standard functional data was not different across assessment points but apical rotation and twist were higher at ENDPRE (9.83˚ and 16.55˚, respectively compared to all other time points (MIDCOMP, 6.13˚ and 12.62˚; ENDCOMP, 5.84˚ and 12.12˚; ENDOFF 6.60˚ and 12.35˚). CONCLUSIONS: Despite some seasonal variation in training load, the athletes' ECG and cardiac structure were stable across a competitive season. Seasonal variation in left ventricular (LV) apical rotation and twist, associated with higher training loads, should be noted in the context of PCS
Improved identification of abdominal aortic aneurysm using the Kernelized Expectation Maximization algorithm
Abdominal aortic aneurysm (AAA) monitoring and risk of rupture is currently assumed to be correlated with the aneurysm diameter. Aneurysm growth, however, has been demonstrated to be unpredictable. Using PET to measure uptake of [18F]-NaF in calcified lesions of the abdominal aorta has been shown to be useful for identifying AAA and to predict its growth. The PET low spatial resolution, however, can affect the accuracy of the diagnosis. Advanced edge-preserving reconstruction algorithms can overcome this issue. The kernel method has been demonstrated to provide noise suppression while retaining emission and edge information. Nevertheless, these findings were obtained using simulations, phantoms and a limited amount of patient data. In this study, the authors aim to investigate the usefulness of the anatomically guided kernelized expectation maximization (KEM) and the hybrid KEM (HKEM) methods and to judge the statistical significance of the related improvements. Sixty-one datasets of patients with AAA and 11 from control patients were reconstructed with ordered subsets expectation maximization (OSEM), HKEM and KEM and the analysis was carried out using the target-to-blood-pool ratio, and a series of statistical tests. The results show that all algorithms have similar diagnostic power, but HKEM and KEM can significantly recover uptake of lesions and improve the accuracy of the diagnosis by up to 22% compared to OSEM. The same improvements are likely to be obtained in clinical applications based on the quantification of small lesions, like for example cancer
A Model for the Elasticity of Compressed Emulsions
We present a new model to describe the unusual elastic properties of
compressed emulsions. The response of a single droplet under compression is
investigated numerically for different Wigner-Seitz cells. The response is
softer than harmonic, and depends on the coordination number of the droplet.
Using these results, we propose a new effective inter-droplet potential which
is used to determine the elastic response of a monodisperse collection of
disordered droplets as a function of volume fraction. Our results are in
excellent agreement with recent experiments. This suggests that anharmonicity,
together with disorder, are responsible for the quasi-linear increase of
and observed at .Comment: RevTeX with psfig-included figures and a galley macr
Dark-in-Bright Solitons in Bose-Einstein Condensates with Attractive Interactions
We demonstrate a possibility to generate localized states in effectively
one-dimensional Bose-Einstein condensates with a negative scattering length in
the form of a dark soliton in the presence of an optical lattice (OL) and/or a
parabolic magnetic trap. We connect such structures with twisted localized
modes (TLMs) that were previously found in the discrete nonlinear
Schr{\"o}dinger equation. Families of these structures are found as functions
of the OL strength, tightness of the magnetic trap, and chemical potential, and
their stability regions are identified. Stable bound states of two TLMs are
also found. In the case when the TLMs are unstable, their evolution is
investigated by means of direct simulations, demonstrating that they transform
into large-amplitude fundamental solitons. An analytical approach is also
developed, showing that two or several fundamental solitons, with the phase
shift between adjacent ones, may form stable bound states, with
parameters quite close to those of the TLMs revealed by simulations. TLM
structures are found numerically and explained analytically also in the case
when the OL is absent, the condensate being confined only by the magnetic trap.Comment: 13 pages, 7 figures, New Journal of Physics (in press
A unified approach for the solution of the Fokker-Planck equation
This paper explores the use of a discrete singular convolution algorithm as a
unified approach for numerical integration of the Fokker-Planck equation. The
unified features of the discrete singular convolution algorithm are discussed.
It is demonstrated that different implementations of the present algorithm,
such as global, local, Galerkin, collocation, and finite difference, can be
deduced from a single starting point. Three benchmark stochastic systems, the
repulsive Wong process, the Black-Scholes equation and a genuine nonlinear
model, are employed to illustrate the robustness and to test accuracy of the
present approach for the solution of the Fokker-Planck equation via a
time-dependent method. An additional example, the incompressible Euler
equation, is used to further validate the present approach for more difficult
problems. Numerical results indicate that the present unified approach is
robust and accurate for solving the Fokker-Planck equation.Comment: 19 page
- …