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Abdominal aortic aneurysm (AAA) monitoring and
risk of rupture is currently assumed to be correlated
with the aneurysm diameter. Aneurysm growth,
however, has been demonstrated to be unpredictable.
Using PET to measure uptake of [18F]-NaF in calcified
lesions of the abdominal aorta has been shown to
be useful for identifying AAA and to predict its
growth. The PET low spatial resolution, however, can
affect the accuracy of the diagnosis. Advanced edge-
preserving reconstruction algorithms can overcome
this issue. The kernel method has been demonstrated
to provide noise suppression while retaining
emission and edge information. Nevertheless, these
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findings were obtained using simulations, phantoms and a limited amount of patient data.
In this study, the authors aim to investigate the usefulness of the anatomically guided
kernelized expectation maximization (KEM) and the hybrid KEM (HKEM) methods and to
judge the statistical significance of the related improvements. Sixty-one datasets of patients
with AAA and 11 from control patients were reconstructed with ordered subsets expectation
maximization (OSEM), HKEM and KEM and the analysis was carried out using the target-to-
blood-pool ratio, and a series of statistical tests. The results show that all algorithms have
similar diagnostic power, but HKEM and KEM can significantly recover uptake of lesions
and improve the accuracy of the diagnosis by up to 22% compared to OSEM. The same
improvements are likely to be obtained in clinical applications based on the quantification
of small lesions, like for example cancer.

This article is part of the theme issue ‘Synergistic tomographic image reconstruction:
part 1’.

1. Introduction
Abdominal aortic aneurysm (AAA) monitoring and rupture prediction is currently based on
the measurement of the aneurysm diameter over time to determine its growth [1]. Aneurysm
growth, however, has been demonstrated to be difficult to predict and affected by many
biological factors [2]. To overcome this issue, the use of molecular imaging such as positron
emission tomography (PET)/computed tomography (CT) with [18F]-sodium fluoride (NaF) as the
radiotracer was proposed and investigated [3]. Measured uptake of [18F]-NaF in calcified lesions
of the abdominal aorta has been demonstrated to be useful to identify AAA and to predict its
growth [4].

These results were obtained using the standard ordered subsets expectation maximization
(OSEM) [5] as image reconstruction method, including point spread function (PSF) modelling,
and post-reconstruction filtering. As mentioned above, PET allows identification of micro-
calcification in the aorta, but low spatial resolution and the partial volume effect (PVE) pose a
challenge to this task. In addition, [18F]-NaF shows high activity in the spine which is extremely
close to the aneurysm and can cause spill-in from the spine to the aorta [6]. PVE can lead to
overestimation (spill-in) or underestimation (spill-out) of activity in small regions, especially
when the target region is close to a hot background region. The gold standard OSEM with
PSF modelling has been shown to suffer from this problem and algorithms like the background
correction and the kernel method can reduce the spill-in effect [7].

The kernel method for image reconstruction has been demonstrated to improve noise
suppression while preserving activity of small lesions, to be robust with respect to anatomical-
functional inconsistencies, and to improve quantification in different case scenarios [8–11]. Based
on these results, the assumption of this study is that the early diagnosis of the AAA could be
improved by using reconstruction techniques that preserve small activity lesions such as the
Hybrid Kernelized EM (HKEM).

The paper is structured as follows: §2 describes the datasets used in this study, the image
reconstruction settings, and the experimental methodology. Section 3 presents the results of the
proposed method and comparison of results obtained from the different algorithms. The results
are discussed in §4 and conclusion is drawn in §5.

2. Methods and materials

(a) Kernel description
Following the mathematical notation in [9], the algorithm is described as follows.
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Considering the kernel method for machine learning [12], we can describe the PET image, λ,
as a linear combination

λj =
Nj∑

f=1

αf kfj; (2.1)

where kfj is the fjth element of the kernel matrix, k, αf is the f th element of the coefficient vector
that we need to estimate, and Nj is the number of feature vectors used to estimate the kernel
element relative to the image voxel j. After the maximization of the log-likelihood for α we obtain
the following iterative algorithm

α
(n+1)
f =

α
(n)
f∑Nf

j=1 k(n)
fj
∑

i∈Jf
cij

Nf∑
j=1

k(n)
fj

L∑
i=1

cij
yi∑

l∈Ii
cil
∑Nl

q=1 k(n)
ql α

(n)
q + si

; (2.2)

where α
(n)
f is the f th kernel coefficient estimated at iteration n, yi is the ith line of response (LOR),

L is the total number of LORs, cij is the probability that an event occurring in voxel j produces
a coincidence in the ith LOR and si is the additive term introducing the randoms and scatter
correction for the ith LOR.

The kernel matrix, K(n) is the product of two different terms, Km and K(n)
p , and allows modelling

of prior information from the anatomical and functional images respectively

K(n) = Km · K(n)
p ; (2.3)

with

km(vj, vf ) = exp

(
−‖vj − vf ‖2

2σ 2
m

)
exp

(
−‖xj − xf ‖2

2σ 2
dm

)
(2.4)

and

kp(z(n)
j , z(n)

f ) = exp

⎛
⎝−

‖z(n)
j − z(n)

f ‖2

2σ 2
p

⎞
⎠ exp

(
−‖xj − xf ‖2

2σ 2
dp

)
(2.5)

xj is the coordinate of the jth voxel, vj and z(n)
j are the feature vectors calculated, respectively,

from the anatomical image and the nth update image, αn, while σm, σp, σdm and σdp are scaling
parameters for the distances in (2.4) and (2.5), which allow adjustment of noise suppression and
edge preservation. The anatomical information in this work is the CT image, which shows the
spine and the aorta at high resolution. The reconstruction process is schematically described in
figure 1.

KEM can be thought of as a special condition of HKEM when no iterative information is used.
The objectives of this work are to investigate the usefulness of the KEM and HKEM in improving
the diagnosis of AAA with a sample of 61 positive patients and 11 control patients; to compare
HKEM, KEM and OSEM; and to investigate the optimization of the kernel parameter settings.
The latter was achieved using a sub-sample of 10 patients. The sub-sample was randomly selected
from the positive patient datasets and was excluded from the test dataset for the analysis.

(b) Patient data
A sample of 61 PET/CT datasets from patients showing aneurysm of varying diameters, and 11
PET/CT control datasets were used from the archive of the [18F]-NaF uptake in AAA (SoFIA3)
PET/CT study (NCT02229006) [4]. The study considered patients with an average age of 72.5 ±
6.9 years, body mass index 27.6 ± 3.5 kg m−2 and aortic diameter 48.8 ± 7.7 mm.

Each patient was injected with 125 MBq of [18F]-NaF and imaged 60 min post-injection using
the Biograph mCT scanner (Siemens Healthineers, Knoxville, TN, USA) [3]. A low-dose CT
attenuation correction (CTAC) acquisition was carried out (120 kV, 50 mAs, 5/3 mm) followed
by acquisition of PET data using 3 × 10 min bed positions to ensure coverage from the thoracic
aorta to the aortic bifurcation.
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anatomical

reconstructed

iterative
reconstruction

functional

fused PET/CT

Figure 1. Schematic of the reconstruction with the HKEM. The anatomical image is used as prior information in the
reconstruction algorithm; the result of this iteration is used as extra prior information for the following iteration. (Online version
in colour.)

(c) Reconstruction
All datasets were reconstructed with 21 subsets and 10 full iterations using HKEM, KEM and
OSEM. The most frequent optimum parameter settings (N, σm, σp, σdm and σdp) for KEM and
HKEM were evaluated on a sub-sample of 10 positive patients. For all the algorithms point spread
function (PSF) modelling was incorporated as an isotropic three-dimensional Gaussian kernel
with 4.4 mm full width half maximum (FWHM) for all directions. A Gaussian post-reconstruction
filter with 5 mm FWHM was applied to OSEM. For this reason we refer to it as OSEM+G in all the
figures.

The iteration number used for the comparison and the images in the figures was chosen as
the one providing the highest number of true positives. The reconstructed PET image size was
400 × 400 × 109 voxels, and the voxel size was 2.04 × 2.04 × 2.03 cm3. The CT image was used as
anatomical information for KEM and HKEM, and it was down-sampled to match the PET images.

Scatter, randoms, normalization and attenuation corrections were estimated using the vendor
software. The image reconstruction was made using the open source Software for Tomographic
Image Reconstruction (STIR) [13] v. 4.0.

(d) Image analysis
A database containing all the quantitative information for each patient and region of interest
(ROI) was created using STIR [14], and all the statistical analysis was performed with R [15]. The

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

03
 J

un
e 

20
21

 



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200201

................................................................

A
B

T

Figure 2. Extracted regions of interest (ROIs) showed on the CT image: the target AAA region (T), non-AAA aorta (A) and blood
pool region or vena cava (B). (Online version in colour.)

comparison was carried out in terms of different metrics, following the clinical protocol in [4].
ROI analysis was performed using three separate regions: (1) the target (T) AAA ROI where the
micro-calcification were expected to be, (2) the part of the aorta that does not show growth nor
activity (A), and (3) the vena cava (B). An example of the segmented ROIs is shown in figure 2.
For the control group, even though the aorta should not have enlargement, the part of the artery
where the aneurysm is usually located was considered for the ROI T. This is the part close to the
aorta bifurcation.

The ROIs were extracted using the CT image, at the same time it was possible to display the
PET image. In this way, it was possible to exclude those voxels that were too close to the spine
and therefore to avoid spill-in effects in the analysis. A semi-automatic segmentation method in
ITK-SNAP based on thresholding [16] was used. Quantitative comparison was performed using
the maximum target to blood pool ratio (TBRmax) [17]:

TBRmax(T) = SUVmax(T)
SUVmean(B)

; (2.6)

where SUVmax(T) is the maximum SUV value within T, SUVmean(B) is the mean value within
the blood pool region, B. The TBRmax(A) is calculated similarly. Then the percentage increase of
uptake between the aneurysm and the normal part of the aorta was calculated as

Increase = TBRmax(T) − TBRmax(A)
TBRmax(A)

× 100. (2.7)

An increase higher than 25% is considered significant according to the European Organization
for Research and Treatment of Cancer (EORTC) [18–22]. If the exam shows such an increase
the patient is considered positive for AAA. To assess the significance of the difference between
the quantification with the three algorithms a paired t-test was performed for each algorithm
combination. A receiver operating characteristic (ROC) analysis was also performed to compare
the accuracy of the techniques at the standard 25% threshold using the open source pROC
package [23], including the Delong’s test to assess the differences between the area under the
curve (AUC). Pearson’s correlation analysis was carried out to assess the relationship between
the estimated uptake increase and the diameter of the aneurysm. Finally, a predictive model
was created using logistic regression. To perform this analysis, random sub-sampling was used
to make sure that each class has around the same number of cases. The regression studies the
relationship between ROI value (TBRmax) and the AAA positivity.

3. Results
To find the optimum parameter setting for HKEM and KEM, a sub-sample of 10 patients
was used. These data were reconstructed with a set of different parameters combination and
TBRmax(T) was plotted against the CoV as reported in figure 3. Figure 3 illustrates an example of
how the optimum kernel setting was selected for each of the 10 patients. The optimum parameter
value was the one that gave higher TBRmax at fixed coefficient of variation (CoV). This procedure
was repeated for all the 10 patient datasets selected for the optimization study and table 1 reports
the frequency of the optimum kernel parameter value for the selected data using KEM and
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Figure 3. Example of the parameter optimization process using the results for one patient. (Online version in colour.)

Table 1. Frequencies of optimum value among 10 patients for each kernel parameter. σp is specific to HKEM as it controls the
edge preservation of the functional information.

nn HKEM KEM σm HKEM KEM σp HKEM σdm HKEM KEM

3 3 6 0.1 10 7 0.1 6 0.1 2 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 7 4 0.5 1 0.5 3 0.5 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 1 1 1 1 2 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 3 3 6 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 2 5 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HKEM. The table highlights in bold the highest frequency. Note that σp is specific to HKEM as it
controls the edge preservation of the functional information.

Figure 4 shows TBRmax(T) as a function of the CoV and the iteration number. The black box
highlights the iteration which gave similar CoV among the three algorithms.

Figure 5 reports the reconstructed images for three patient datasets and compares between the
different algorithms. The circles highlight the aneurysm with the calcified lesions.
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Figure 4. TBRmax(T) as a function of the CoV (and iteration) for all the algorithms using three patients. The numbers on the top
are identificationnumbers assigned for this study, and thebox shows thepointswhere thedifferent algorithmshave comparable
CoV. (Online version in colour.)

HKEM OSEM+G KEM

P1

P2

P3

Figure 5. Comparison of the images reconstructed with HKEM, OSEM+G and KEM for three patients. The images show a
transverse view through the abdomen, highlighting the AAA region within the circle. (Online version in colour.)

The analysis on the full sample of 61 AAA patients and 11 control group is reported in figure 6.
In particular, (a) reports the percentage increase in TBRmax for all techniques and AAA patients,
whereas (b) reports the same for the control group. The red dashed line is the 25% threshold used
to classify the patient as positive to AAA or not.

Table 2 reports the results of the paired t-test showing the significance of the differences
between HKEM and OSEM+G, KEM and OSEM+G, and HKEM and KEM at the confidence level
(CL) of 95%.

An ROC curve analysis was carried out to assess the diagnostic power of the three methods.
Table 3 reports the values of specificity, sensitivity, accuracy and precision for the threshold value
of 25%, and the area under the curve for HKEM, KEM and OSEM+G. The ROC curves are
reported in the electronic supplementary material, figure S1.
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Table 2. Paired t-test assessing the difference between the results obtained with the three algorithms (95% CL).

algorithms p-value

HKEM - OSEM+G 7 · 10−6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KEM - OSEM+G 1.8 · 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HKEM - KEM 8.4 · 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. ROC analysis and comparison between HKEM, KEM, OSEM+G.

algorithm specificity sensitivity accuracy precision AUC

HKEM 1 0.96 0.97 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KEM 1 0.94 0.95 1 0.998
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OSEM+G 1 0.77 0.81 1 0.972
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 7 shows the results of Pearson’s correlation analysis to study the relationship between
the uptake increase and the diameter of the aneurysm.

Finally, figure 8 and table 4 report the logistic regression analysis, included coefficients,
residual deviances, standard errors and p-values for each algorithm.
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Figure 8. Logistic regression fit with standard error for each algorithm using the balanced data. The scattered points represent
the true value of positivity (1 for positive or 0 negative) against the TBRmax. (Online version in colour.)

Table 4. Logistic regression analysis and comparison between HKEM, KEM, OSEM+G.

algorithm intercept/p-value TBRmax coeff/p-value accuracy residual deviance

HKEM −8.86 ± 3.6/0.02 2.8 ± 1.2/0.02 0.91 10.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KEM −6.4 ± 3/0.04 2.4 ± 1.2/0.04 0.77 20.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OSEM+G −11.9 ± 5.4/0.03 5.0 ± 2.3/0.03 0.77 18.96
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Discussion
PET imaging with [18F]-NaF is presently being investigated for the classification of micro-
calcification in arteries. The low spatial resolution and the PVE, however, threaten the diagnostic
accuracy in cases where the calcification is small, making it challenging to detect the disease at
early stage. This work investigates the benefits of the recently proposed algorithms, KEM and
HKEM, on the quantification and classification of AAA.

The choice of the iteration is a challenging task. As can be seen from figure 4 the algorithms
can have different CoV at the same iteration so it would be fair to compare the algorithms at the
same noise level. The analysis was first carried out by selecting the iteration in a way that all
methods were compared at similar CoV for each patient. Nevertheless, such a procedure would
need to be repeated for every patient and in a clinical environment it would not be possible to look
at the different performance for each iteration since the vendor software only saves the chosen
iteration image. For this reason, all the information was saved for 10 iterations and the iteration
with the highest number of true positives was selected for every algorithm. The selected iteration
was the 4th for HKEM and KEM and the 3rd for OSEM+G. The outcomes of these two different
choices of iteration were the same. From the same figure, it can be noted that the TBRmax value
keeps increasing iteration after iteration and the algorithms do not reach a plateau within 10 full
iterations. This is consistent with all the patients, and is due to the fact that the analysis is based
on the voxel with the maximum value.

The visual comparison in figure 5, for three patients, shows how HKEM is able to provide
well-defined lesions in the aneurysm compared to the other two algorithms. KEM also shows
improved definition and higher contrast over OSEM+G. Although only three patient images
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are reported, these results were consistent among all the patient datasets. These results give
confirmation of what was previously demonstrated in other work [9,24] but on a larger
scale.

Almost all the positive patients in the test dataset, 96% for HKEM, 94% for KEM and 76% for
OSEM+G, showed significant (relative increase > 25%) uptake in the aneurysm. Figure 6 shows
that on average KEM and HKEM provide a higher increase than OSEM+G and the statistical
significance of these differences was demonstrated with a paired t-test at the 95% CL. From table 2,
it is evident that the TBRmax(T) estimated with one algorithm is different to the one obtained with
the other two algorithms, with a p-value lower than 0.01.

The ROC analysis is reported in table 3 for the threshold value of 25%. The specificity value
tells us that all algorithms provide the maximum probability of identifying a non-diseased patient
as negative. The precision is the same for all the algorithms. The sensitivity, which describes
the probability of a diseased patient being identified as positive, provides the real difference
between the algorithms with the highest value for HKEM followed by KEM with a difference
of 2%, and OSEM+G, with a difference of 18%. The accuracy also shows a similar trend, the
HKEM and KEM provide respectively a 16% and 14% higher probability of classifying a patient
with the correct label relative to OSEM+G. It can be seen that the value of the AUC is similar
among the algorithms and is always close to 1. Delong’s test, used to compare whether each
pair of AUC are different, provided a p-value higher than 0.06, meaning that although the
algorithms behave differently for each threshold, their performances are in agreement globally
(at the 95% CL).

The final test was the study of the correlation between the diameter of the aneurysm and the
increase of uptake between the aneurysm and the normal aorta. Previous studies have reported
non-significant correlation at the 95% CL [4,6] using OSEM+G, and this work is in agreement with
these findings as reported in figure 7. In fact, the correlation is not significant for OSEM+G and
KEM at the 95% CL. For HKEM, in contrast, the two variables are significantly correlated with a
p-value of 0.045. The correlation is nevertheless moderate with a coefficient of 0.28. In addition,
it is worth noting that the OSEM+G p-value is just at the limit and the correlation would be
significant at the 90% CL. These results show the existence of a weak relationship between
aneurysm size and uptake increase, but it is not enough to use the measurement of the aneurysm
size as the only biomarker because small aneurysm may still have micro-calcification which is
detectable using PET. The reader can notice that there are outliers in figure 6, although these
CT and PET images did not show particular differences to those of other patients, to check
robustness, the analysis was repeated excluding the outliers and the results were unchanged.
Figure 8 and table 4 are useful to cross-validate the study. It can be seen that the ROI value
is a significant parameter for each algorithm, with p-value ≤0.04, and that the HKEM achieves
the highest accuracy and the smallest residual deviance. Based on the estimated probability as a
function of TBRmax we can predict for each algorithm which value of TBRmax is the classification
threshold. This value is 3.13 for HKEM, 2.69 for KEM and 2.26 for OSEM+G.

Even though this study was optimized and designed for the identification of calcified lesions in
the AAA, its results show promising implications on all diagnostic applications where relatively
small lesions need to be detected and quantified. Synergistic reconstruction algorithms like KEM
and HKEM, with optimized hyper-parameters, not only have similar diagnostic performance to
OSEM+G, without loss of information, but also significantly improve the quantification of the
lesions and the accuracy of the diagnostic prediction. It is worth noting that HKEM relies on
previous activity estimate, and although previous studies [9,25] have shown that it converges to
a fixed point, no theoretical convergence guarantee can be provided.

If the sensitivity of PET scanners is substantially higher, as for example in the case of long axial
field-of-view scanners [26], one could reconstruct the PET images matching the CT voxel size, and
consequently gaining substantially more resolution improvement.

With the rising utilization of deep learning in image reconstruction, an extension of this work
could be to train a network to find the optimum parameter setting, although a larger amount of
data may be needed.
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5. Conclusion
The performance of two synergistic reconstruction algorithms, HKEM and KEM with the
clinical gold standard, OSEM+G, was compared on the issue of AAA identification and
uptake quantification. Sixty-one AAA and 11 control datasets were involved in the study.
The statistical analysis demonstrated that HKEM, which makes use of both anatomical and
functional information, is able to provide generally higher uptake increase. KEM, which uses
only anatomical information, still provided significant uptake increase compared to OSEM+G;
all algorithms have excellent diagnostic power but show differences in sensitivity and accuracy
at the recommended threshold of 25%, with HKEM and KEM providing the highest values. In
the light of these results we are able to assert that synergistic reconstruction algorithms such as
HKEM and KEM, do bring benefit to the diagnosis of a disease like AAA by reducing the rate of
false positives and false negatives.
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