5,231 research outputs found
A spectroscopically confirmed z=1.327 galaxy-scale deflector magnifying a z~8 Lyman-Break galaxy in the Brightest of Reionizing Galaxies survey
We present a detailed analysis of an individual case of gravitational lensing
of a Lyman-Break galaxy (LBG) in a blank field, identified in Hubble
Space Telescope imaging obtained as part of the Brightest of Reionizing
Galaxies survey. To investigate the close proximity of the bright
() -dropout to a small group of foreground galaxies, we
obtained deep spectroscopy of the dropout and two foreground galaxies using
VLT/X-Shooter. We detect H-, H-, [OIII] and [OII] emission in
the brightest two foreground galaxies (unresolved at the natural seeing of
arcsec), placing the pair at . We can rule out emission lines
contributing all of the observed broadband flux in band at
, allowing us to exclude the candidate as a low redshift
interloper with broadband photometry dominated by strong emission lines. The
foreground galaxy pair lies at the peak of the luminosity, redshift and
separation distributions for deflectors of strongly lensed objects,
and we make a marginal detection of a demagnified secondary image in the
deepest () filter. We show that the configuration can be accurately
modelled by a singular isothermal ellipsoidal deflector and a S\'{e}rsic source
magnified by a factor of . The reconstructed source in the
best-fitting model is consistent with luminosities and morphologies of
LBGs in the literature. The lens model yields a group mass of
and a stellar mass-to-light ratio for the
brightest deflector galaxy of within its effective radius. The foreground galaxies'
redshifts would make this one of the few strong lensing deflectors discovered
at .Comment: Accepted for publication in MNRAS. 16 pages, 11 figures, 3 table
The Impact of Strong Gravitational Lensing on Observed Lyman-Break Galaxy Numbers at 4<z<8 in the GOODS and the XDF Blank Fields
Detection of Lyman-Break Galaxies (LBGs) at high-redshift can be affected by
gravitational lensing induced by foreground deflectors not only in galaxy
clusters, but also in blank fields. We quantify the impact of strong
magnification in the samples of , , , LBGs () observed in the XDF and GOODS/CANDELS fields, by investigating the
proximity of dropouts to foreground objects. We find that of bright
LBGs () by
foreground objects. This fraction decreases from at to
at . Since the observed fraction of strongly lensed
galaxies is a function of the shape of the luminosity function (LF), it can be
used to derive Schechter parameters, and , independently
from galaxy number counts. Our magnification bias analysis yields
Schechter-function parameters in close agreement with those determined from
galaxy counts albeit with larger uncertainties. Extrapolation of our analysis
to suggests that future surveys with JSWT, WFIRST and EUCLID
should find excess LBGs at the bright-end, even if there is an intrinsic
exponential cutoff of number counts. Finally, we highlight how the
magnification bias measurement near the detection limit can be used as probe of
the population of galaxies too faint to be detected. Preliminary results using
this novel idea suggest that the magnification bias at is not
as strong as expected if extends well below the current
detection limits in the XDF. At face value this implies a flattening of the LF
at . However, selection effects and completeness estimates
are difficult to quantify precisely. Thus, we do not rule out a steep LF
extending to .Comment: Submitted to ApJ on 18/12/201
NEOWISE Reactivation Mission Year Three: Asteroid Diameters and Albedos
The Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE)
reactivation mission has completed its third year of surveying the sky in the
thermal infrared for near-Earth asteroids and comets. NEOWISE collects
simultaneous observations at 3.4 um and 4.6 um of solar system objects passing
through its field of regard. These data allow for the determination of total
thermal emission from bodies in the inner solar system, and thus the sizes of
these objects. In this paper we present thermal model fits of asteroid
diameters for 170 NEOs and 6110 MBAs detected during the third year of the
survey, as well as the associated optical geometric albedos. We compare our
results with previous thermal model results from NEOWISE for overlapping sample
sets, as well as diameters determined through other independent methods, and
find that our diameter measurements for NEOs agree to within 26% (1-sigma) of
previously measured values. Diameters for the MBAs are within 17% (1-sigma).
This brings the total number of unique near-Earth objects characterized by the
NEOWISE survey to 541, surpassing the number observed during the fully
cryogenic mission in 2010.Comment: Accepted for publication in A
Lower bounds on photometric redshift errors from Type Ia supernovae templates
Cosmology with Type Ia supernovae heretofore has required extensive
spectroscopic follow-up to establish a redshift. Though tolerable at the
present discovery rate, the next generation of ground-based all-sky survey
instruments will render this approach unsustainable. Photometry-based redshift
determination is a viable alternative, but introduces non-negligible errors
that ultimately degrade the ability to discriminate between competing
cosmologies. We present a strictly template-based photometric redshift
estimator and compute redshift reconstruction errors in the presence of
photometry and statistical errors. With reasonable assumptions for a cadence
and supernovae distribution, these redshift errors are combined with systematic
errors and propagated using the Fisher matrix formalism to derive lower bounds
on the joint errors in and relevant to the next
generation of ground-based all-sky survey.Comment: 23 pages, 6 figure
DSM-IV defined conduct disorder and oppositional defiant disorder: An investigation of shared liability in female twins
BACKGROUND: DSM-IV specifies a hierarchal diagnostic structure such that an ODD diagnosis is applied only if criteria are not met for CD. Genetic studies of ODD and CD support a combination of shared genetic and environmental influences, but largely ignore the imposed diagnostic structure. METHODS: We examined whether ODD and CD share an underlying etiology while accounting for DSM-IV diagnostic specifications. Data from 1446 female twin pairs, aged 11–19, were fitted to two-stage models adhering to the DSM-IV diagnostic hierarchy. RESULTS: Models suggested that DSM-IV ODD-CD covariation is attributed largely to shared genetic influences. CONCLUSIONS: This is the first study, to our knowledge, to examine genetic and environmental overlap among these disorders while maintaining DSM-IV hierarchical structure. Findings reflect primarily shared genetic influences and specific (i.e., uncorrelated) shared/familial environmental effects on these DSM-IV defined behaviors. These results have implications for how best to define CD and ODD for future genetically-informed analyses
The Rising Light Curves of Type Ia Supernovae
We present an analysis of the early, rising light curves of 18 Type Ia
supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF) and the
La Silla-QUEST variability survey (LSQ). We fit these early data flux using a
simple power-law to determine the time of first
light , and hence the rise-time from first light to
peak luminosity, and the exponent of the power-law rise (). We find a mean
uncorrected rise time of days, with individual SN rise-times
ranging from to days. The exponent n shows significant
departures from the simple 'fireball model' of (or ) usually assumed in the literature. With a mean value of , our data also show significant diversity from event to event. This
deviation has implications for the distribution of 56Ni throughout the SN
ejecta, with a higher index suggesting a lesser degree of 56Ni mixing. The
range of n found also confirms that the 56Ni distribution is not standard
throughout the population of SNe Ia, in agreement with earlier work measuring
such abundances through spectral modelling. We also show that the duration of
the very early light curve, before the luminosity has reached half of its
maximal value, does not correlate with the light curve shape or stretch used to
standardise SNe Ia in cosmological applications. This has implications for the
cosmological fitting of SN Ia light curves.Comment: 19 pages, 19 figures, accepted for publication in MNRA
Mechanisms controlling giant sea salt aerosol size distributions along a tropical orographic coastline
Sea salt aerosol (SSA) is a naturally occurring phenomenon that arises from the breaking of waves and consequent bubble bursting on the ocean's surface. The resulting particles exhibit a bimodal distribution spanning orders of magnitude in size that introduces significant uncertainties when estimating the total annual mass of SSA on a global scale. Although estimates of mass and volume are significantly influenced by the presence of giant particles (dry radius >1 µm), effectively observing and quantifying these particles proves to be challenging. Additionally, uncertainties persist regarding the contribution of SSA production along coastlines, but preliminary studies suggest that coastal interactions may increase SSA particle concentrations by orders of magnitude. Moreover, our knowledge regarding the vertical distribution of SSA particles in the marine boundary layer remains limited, resulting in significant gaps in understanding the vertical mixing of giant aerosol particles and specific environmental conditions facilitating their dispersion. By addressing these uncertainties, particularly in regions where SSA particles constitute a substantial percentage of total aerosol loading, we can enhance our comprehension of the complex relationships between the air, sea, aerosols, and clouds.
A case study conducted on the Hawaiian island of O`ahu offers insight into the influence of coastlines and orography on the production and vertical distribution of giant SSA size distributions. Along the coastline, the frequency of breaking waves is accelerated, serving as an additional source of SSA production. Furthermore, the steep island orography generates strong and consistent uplift under onshore trade wind conditions, facilitating vertical mixing of SSA particles along windward coastlines. To investigate this phenomenon, in situ measurements of SSA size distributions for particles with dry radii (rd) ≥ 2.8 µm were conducted for various altitudes, ranging from approximately 80 to 650 m altitude along the windward coastline and from 80 to 250 m altitude aboard a ship offshore. Comparing size distributions onshore and offshore confirmed significantly higher concentrations along the coastline, with 2.7–5.4 times greater concentrations than background open-ocean concentrations for supermicron particles. These size distributions were then analyzed in relation to environmental variables influencing SSA production and atmospheric dynamics. It was found that significant wave height exhibited the strongest correlation with changes in SSA size distributions. Additionally, simulated sea salt particle trajectories provided valuable insight into how production distance from the coastline impacts the horizontal and vertical advection of SSA particles of different sizes under varying trade wind speeds. Notably, smaller particles demonstrated reduced dependence on local wind speeds and production distance from the coastline, experiencing minimal dry deposition and high average maximum altitudes relative to larger particles. This research not only highlights the role of coastlines in enhancing the presence and vertical mixing potential of giant SSA particles, but also emphasizes how important it is to consider the influence of local factors on aerosol observations at different altitudes.</p
Distance to the Active Galaxy NGC 6951 via the Type Ia Supernova 2000E
CCD-photometry and low-resolution spectroscopy of the bright supernova SN
2000E in NGC 6951 are presented. Both the light curve extending up to 150 days
past maximum and the spectra obtained at 1 month past maximum confirm that SN
2000E is of Type Ia. The reddening of SN 2000E is determined as
E(B-V)=0.36+/-0.15, its error is mainly due to uncertainties in the predicted
SN (B-V) colour at late epochs. The V(RI)_C light curves are analyzed with the
Multi-Colour Light Curve Shape (MLCS) method. The shape of the late light curve
suggests that SN 2000E was overluminous by about 0.5 mag at maximum comparing
with a fiducial SN Ia. This results in an updated distance of 33+/-8 Mpc of NGC
6951 (corrected for interstellar absorption). The SN-based distance modulus is
larger by about +0.7 mag than the previous Tully-Fisher estimates. However,
possible systematic errors due to ambiguities in the reddening determination
and estimates of the maximum luminosity of SN 2000E may plague the present
distance measurement.Comment: 9 p., 5 figs, accepted for publication in A&A. A reference correcte
Spectral Models for Early Time SN 2011fe Observations
We use observed UV through near IR spectra to examine whether SN 2011fe can
be understood in the framework of Branch-normal SNe Ia and to examine its
individual peculiarities. As a benchmark, we use a delayed-detonation model
with a progenitor metallicity of Z_solar/20. We study the sensitivity of
features to variations in progenitor metallicity, the outer density profile,
and the distribution of radioactive nickel. The effect of metallicity
variations in the progenitor have a relatively small effect on the synthetic
spectra. We also find that the abundance stratification of SN 2011fe resembles
closely that of a delayed detonation model with a transition density that has
been fit to other Branch-normal Type Ia supernovae. At early times, the model
photosphere is formed in material with velocities that are too high, indicating
that the photosphere recedes too slowly or that SN 2011fe has a lower specific
energy in the outer ~0.1 M_sun than does the model. We discuss several
explanations for the discrepancies. Finally, we examine variations in both the
spectral energy distribution and in the colors due to variations in the
progenitor metallicity, which suggests that colors are only weak indicators for
the progenitor metallicity, in the particular explosion model that we have
studied. We do find that the flux in the U band is significantly higher at
maximum light in the solar metallicity model than in the lower metallicity
model and the lower metallicity model much better matches the observed
spectrum.Comment: 9 pages, 14 figures, MNRAS, in press, fixed typ
Isolation and Characterisation of Genes Encoding Malate Synthesis and Transport Determinants in the Aluminum-Tolerant Australian Weeping-Grass (\u3cem\u3eMicrolaena Stipoides\u3c/em\u3e)
Acid soils cover some 40% of the Earth’s arable land where they represent a major limitation to plant production. Plant growth on acid soils is primarily limited due to aluminium (Al) solubilized by acidity into toxic Al3+ cations which will inhibit root growth resulting in poor uptake of water and nutrients. Many important pasture species lack sufficient Al tolerance within their germplasm to allow effective breeding for this character
- …