51,535 research outputs found

    Spectroscopic signatures related to a sunquake

    Get PDF
    © 2015. The American Astronomical Society. All rights reserved.. The presence of flare-related acoustic emission (sunquakes (SQs)) in some flares, and only in specific locations within the flaring environment, represents a severe challenge to our current understanding of flare energy transport processes. In an attempt to contribute to understanding the origins of SQs we present a comparison of new spectral observations from Hinode's EUV imaging Spectrometer (EIS) and the Interface Region Imaging Spectrograph (IRIS) of the chromosphere, transition region, and corona above an SQ, and compare them to the spectra observed in a part of the flaring region with no acoustic signature. Evidence for the SQ is determined using both time-distance and acoustic holography methods, and we find that unlike many previous SQ detections, the signal is rather dispersed, but that the time-distance and 6 and 7 mHz sources converge at the same spatial location. We also see some evidence for different evolution at different frequencies, with an earlier peak at 7 mHz than at 6 mHz. Using EIS and IRIS spectroscopic measurements we find that in this location, at the time of the 7 mHz peak the spectral emission is significantly more intense, shows larger velocity shifts and substantially broader profiles than in the location with no SQ, and there is a good correlation between blueshifted, hot coronal, hard X-ray (HXR), and redshifted chromospheric emission, consistent with the idea of a strong downward motion driven by rapid heating by nonthermal electrons and the formation of chromospheric shocks. Exploiting the diagnostic potential of the Mg ii triplet lines, we also find evidence for a single large temperature increase deep in the atmosphere, which is consistent with this scenario. The time of the 6 mHz and time-distance peak signal coincides with a secondary peak in the energy release process, but in this case we find no evidence of HXR emission in the quake location, instead finding very broad spectral lines, strongly shifted to the red, indicating the possible presence of a significant flux of downward propagating Alfvén waves

    First observational application of a connectivity--based helicity flux density

    Full text link
    Measuring the magnetic helicity distribution in the solar corona can help in understanding the trigger of solar eruptive events because magnetic helicity is believed to play a key role in solar activity due to its conservation property. A new method for computing the photospheric distribution of the helicity flux was recently developed. This method takes into account the magnetic field connectivity whereas previous methods were based on photospheric signatures only. This novel method maps the true injection of magnetic helicity in active regions. We applied this method for the first time to an observed active region, NOAA 11158, which was the source of intense flaring activity. We used high-resolution vector magnetograms from the SDO/HMI instrument to compute the photospheric flux transport velocities and to perform a nonlinear force-free magnetic field extrapolation. We determined and compared the magnetic helicity flux distribution using a purely photospheric as well as a connectivity-based method. While the new connectivity-based method confirms the mixed pattern of the helicity flux in NOAA 11158, it also reveals a different, and more correct, distribution of the helicity injection. This distribution can be important for explaining the likelihood of an eruption from the active region. The connectivity-based approach is a robust method for computing the magnetic helicity flux, which can be used to study the link between magnetic helicity and eruptivity of observed active regions.Comment: 4 pages, 3 figures; published online in A&A 555, L6 (2013

    New technologies and future of newspapers

    Get PDF
    This essay analyses the impact of new communication technologies on the future of newspapers. In examining current arguments in the literature, it argues that while Internet technology gives it an edge over newspapers in terms of immediacy of news coverage, audience reach and greater interactivity with readers, these characteristics should not be perceived as evidence of the demise of traditional newspapers. The authors contend that the future of newspapers is bright because there are inherent qualities that traditional newspapers possess which would enable them to withstand the Internet news revolution

    The proposed flatland radar

    Get PDF
    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information

    Mediating worlds: the role of nurses as ritual specialists in caring for the dead and dying

    Get PDF
    Rituals are central to the everyday life of the nurse, yet the fundamental roles that rituals play in caring for the dead and dying has often been neglected. This paper explores modern palliative and post-mortem care – its practices, practitioners and arenas – against the background of long-held, global concerns regarding the dead and dying. Comparison with the archaeological and ethnographic records demonstrates©the ubiquitous and enduring practices surrounding death, and the centrality of ritual specialists to this complex social and biological process. This deep-time perspective highlights the importance of nurses, and their associated nursing rituals, in the transition of patients between life and death, and the difficult journeys that nurse, patient and family undertake in this mediation between worlds. Such a perspective not only empowers nurses in their daily practices, and places nursing rituals firmly at the centre of modern palliative care work, but demonstrates the value of archaeology and ethnography in contextualising the challenges of today

    Social Determinants of Smoke Exposure During Pregnancy: Findings From Waves 1 & 2 of the Population Assessment of Tobacco and Health (PATH) Study

    Get PDF
    Maternal smoking during pregnancy (MSDP) and secondhand smoke (SHS) exposure are associated with a myriad of negative health effects for both mother and child. However, less is known regarding social determinants for SHS exposure, which may differ from those of maternal smoking during pregnancy (MSDP). To identify social determinants for SHS exposure only, MSDP only, and MSDP and SHS exposure, data were obtained from all pregnant women (18–54 years; N = 726) in waves 1 and 2 of the Population Assessment of Tobacco and Health Study (2014–2015). Multiple logistic regressions were conducted using SAS 9.4. Smoke exposure during pregnancy was common; 23.0% reported SHS exposure only, 6.1% reported MSDP only, and 11.8% reported both SHS exposure and MSDP. Results demonstrate that relationships between smoke exposure during pregnancy and social determinants vary by type of exposure. Women at risk for any smoke exposure during pregnancy include those who are unmarried and allow the use of combustible tobacco products within the home. Those who are at higher risk for SHS exposure include those who are younger in age, and those who are earlier in their pregnancy. Those who are at higher risk for maternal smoking include those with fair/poor mental health status and those who believe that others\u27 view tobacco use more positively. These results suggest the need for implementing more comprehensive policies that promote smoke-free environments. Implementing these strategies have the potential to improve maternal and fetal health outcomes associated with tobacco smoke exposure

    A machine learning approach to nonlinear modal analysis

    Get PDF
    Although linear modal analysis has proved itself to be the method of choice for the analysis of linear dynamic structures, its extension to nonlinear structures has proved to be a problem. A number of competing viewpoints on nonlinear modal analysis have emerged, each of which preserves a subset of the properties of the original linear theory. From the geometrical point of view, one can argue that the invariant manifold approach of Shaw and Pierre is the most natural generalisation. However, the Shaw–Pierre approach is rather demanding technically, depending as it does on the analytical construction of a mapping between spaces, which maps physical coordinates into invariant manifolds spanned by independent subsets of variables. The objective of the current paper is to demonstrate a data-based approach motivated by Shaw–Pierre method which exploits the idea of statistical independence to optimise a parametric form of the mapping. The approach can also be regarded as a generalisation of the Principal Orthogonal Decomposition (POD). A machine learning approach to inversion of the modal transformation is presented, based on the use of Gaussian processes, and this is equivalent to a nonlinear form of modal superposition. However, it is shown that issues can arise if the forward transformation is a polynomial and can thus have a multi-valued inverse. The overall approach is demonstrated using a number of case studies based on both simulated and experimental data
    • …
    corecore