1,621 research outputs found

    A quasi-pure Bose-Einstein condensate immersed in a Fermi sea

    Full text link
    We report the observation of co-existing Bose-Einstein condensate and Fermi gas in a magnetic trap. With a very small fraction of thermal atoms, the 7Li condensate is quasi-pure and in thermal contact with a 6Li Fermi gas. The lowest common temperature is 0.28 muK = 0.2(1) T_C = 0.2(1) T_F where T_C is the BEC critical temperature and T_F the Fermi temperature. Behaving as an ideal gas in the radial trap dimension, the condensate is one-dimensional.Comment: 4 pages, 5 figure

    Fundamental noise limitations to supercontinuum generation in microstructure fiber

    Full text link
    Broadband noise on supercontinuum spectra generated in microstructure fiber is shown to lead to amplitude fluctuations as large as 50 % for certain input laser pulse parameters. We study this noise using both experimental measurements and numerical simulations with a generalized stochastic nonlinear Schroedinger equation, finding good quantitative agreement over a range of input pulse energies and chirp values. This noise is shown to arise from nonlinear amplification of two quantum noise inputs: the input pulse shot noise and the spontaneous Raman scattering down the fiber.Comment: 16 pages with 6 figure

    Isotopic difference in the heteronuclear loss rate in a two-species surface trap

    Full text link
    We have realized a two-species mirror-magneto-optical trap containing a mixture of 87^{87}Rb (85^{85}Rb) and 133^{133}Cs atoms. Using this trap, we have measured the heteronuclear collisional loss rate ÎČRb−Csâ€Č\beta_{Rb-Cs}' due to intra-species cold collisions. We find a distinct difference in the magnitude and intensity dependence of ÎČRb−Csâ€Č\beta_{Rb-Cs}' for the two isotopes 87^{87}Rb and 85^{85}Rb which we attribute to the different ground-state hyperfine splitting energies of the two isotopes.Comment: 4 pages, 2 figure

    Sensitivity of double resonance alignment magnetometers

    Get PDF
    We present an experimental study of the intrinsic magnetometric sensitivity of an optical/rf-frequency double resonance magnetometer in which linearly polarized laser light is used in the optical pumping and detection processes. We show that a semi-empirical model of the magnetometer can be used to describe the magnetic resonance spectra. Then, we present an efficient method to predict the optimum operating point of the magnetometer, i.e., the light power and rf Rabi frequency providing maximum magnetometric sensitivity. Finally, we apply the method to investigate the evolution of the optimum operating point with temperature. The method is very efficient to determine relaxation rates and thus allowed us to determine the three collisional disalignment cross sections for the components of the alignment tensor. Both first and second harmonic signals from the magnetometer are considered and compared

    From interacting particle systems to random matrices

    Full text link
    In this contribution we consider stochastic growth models in the Kardar-Parisi-Zhang universality class in 1+1 dimension. We discuss the large time distribution and processes and their dependence on the class on initial condition. This means that the scaling exponents do not uniquely determine the large time surface statistics, but one has to further divide into subclasses. Some of the fluctuation laws were first discovered in random matrix models. Moreover, the limit process for curved limit shape turned out to show up in a dynamical version of hermitian random matrices, but this analogy does not extend to the case of symmetric matrices. Therefore the connections between growth models and random matrices is only partial.Comment: 18 pages, 8 figures; Contribution to StatPhys24 special issue; minor corrections in scaling of section 2.

    Magneto-optical Trapping of Cadmium

    Full text link
    We report the laser-cooling and confinement of Cd atoms in a magneto-optical trap, and characterize the loading process from the background Cd vapor. The trapping laser drives the 1S0-1P1 transition at 229 nm in this two-electron atom and also photoionizes atoms directly from the 1P1 state. This photoionization overwhelms the other loss mechanisms and allows a direct measurement of the photoionization cross section, which we measure to be 2(1)x10^(-16)cm^(2) from the 1P1 state. When combined with nearby laser-cooled and trapped Cd^(+) ions, this apparatus could facilitate studies in ultracold interactions between atoms and ions.Comment: 8 pages, 11 figure

    Experimental study of laser detected magnetic resonance based on atomic alignment

    Get PDF
    We present an experimental study of the spectra produced by optical/radio-frequency double resonance in which resonant linearly polarized laser light is used in the optical pumping and detection processes. We show that the experimental spectra obtained for cesium are in excellent agreement with a very general theoretical model developed in our group and we investigate the limitations of this model. Finally, the results are discussed in view of their use in the study of relaxation processes in aligned alkali vapors.Comment: 8 pages, 9 figures. Submitted to Phys. Rev. A. Related to physics/060523

    A Sublinear Variance Bound for Solutions of a Random Hamilton Jacobi Equation

    Full text link
    We estimate the variance of the value function for a random optimal control problem. The value function is the solution wÏ”w^\epsilon of a Hamilton-Jacobi equation with random Hamiltonian H(p,x,ω)=K(p)−V(x/Ï”,ω)H(p,x,\omega) = K(p) - V(x/\epsilon,\omega) in dimension d≄2d \geq 2. It is known that homogenization occurs as ϔ→0\epsilon \to 0, but little is known about the statistical fluctuations of wÏ”w^\epsilon. Our main result shows that the variance of the solution wÏ”w^\epsilon is bounded by O(Ï”/∣logâĄÏ”âˆŁ)O(\epsilon/|\log \epsilon|). The proof relies on a modified Poincar\'e inequality of Talagrand

    Airy processes and variational problems

    Full text link
    We review the Airy processes; their formulation and how they are conjectured to govern the large time, large distance spatial fluctuations of one dimensional random growth models. We also describe formulas which express the probabilities that they lie below a given curve as Fredholm determinants of certain boundary value operators, and the several applications of these formulas to variational problems involving Airy processes that arise in physical problems, as well as to their local behaviour.Comment: Minor corrections. 41 pages, 4 figures. To appear as chapter in "PASI Proceedings: Topics in percolative and disordered systems
    • 

    corecore