research

A Sublinear Variance Bound for Solutions of a Random Hamilton Jacobi Equation

Abstract

We estimate the variance of the value function for a random optimal control problem. The value function is the solution wϵw^\epsilon of a Hamilton-Jacobi equation with random Hamiltonian H(p,x,ω)=K(p)V(x/ϵ,ω)H(p,x,\omega) = K(p) - V(x/\epsilon,\omega) in dimension d2d \geq 2. It is known that homogenization occurs as ϵ0\epsilon \to 0, but little is known about the statistical fluctuations of wϵw^\epsilon. Our main result shows that the variance of the solution wϵw^\epsilon is bounded by O(ϵ/logϵ)O(\epsilon/|\log \epsilon|). The proof relies on a modified Poincar\'e inequality of Talagrand

    Similar works

    Full text

    thumbnail-image

    Available Versions