172 research outputs found

    Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel

    Get PDF
    Pre-ribosomal particles evolve in the nucleus through transient interaction with biogenesis factors, before export to the cytoplasm. Here, we report the architecture of the late pre-60S particle purified from Saccharomyces cerevisiae through Arx1, a nuclear export factor with structural homology to methionine aminopeptidases, or its binding partner Alb1. Cryo-electron microscopy reconstruction of the Arx1-particle at 11.9 Å resolution reveals regions of extra densities on the pre-60S particle attributed to associated biogenesis factors, confirming the immature state of the nascent subunit. One of these densities could be unambiguously assigned to Arx1. Immuno-electron microscopy and UV cross-linking localize Arx1 close to the ribosomal exit tunnel in direct contact with ES27, a highly dynamic eukaryotic rRNA expansion segment. The binding of Arx1 at the exit tunnel may position this export factor to prevent premature recruitment of ribosome-associated factors active during translation

    The GRANDMA network in preparation for the fourth gravitational-wave observing run

    Get PDF
    GRANDMA is a world-wide collaboration with the primary scientific goal ofstudying gravitational-wave sources, discovering their electromagneticcounterparts and characterizing their emission. GRANDMA involves astronomers,astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now atruly global network of telescopes, with (so far) 30 telescopes in bothhemispheres. It incorporates a citizen science programme (Kilonova-Catcher)which constitutes an opportunity to spread the interest in time-domainastronomy. The telescope network is an heterogeneous set of already-existingobserving facilities that operate coordinated as a single observatory. Withinthe network there are wide-field imagers that can observe large areas of thesky to search for optical counterparts, narrow-field instruments that dotargeted searches within a predefined list of host-galaxy candidates, andlarger telescopes that are devoted to characterization and follow-up of theidentified counterparts. Here we present an overview of GRANDMA after the thirdobserving run of the LIGO/VIRGO gravitational-wave observatories in 2019−20202019-2020and its ongoing preparation for the forthcoming fourth observational campaign(O4). Additionally, we review the potential of GRANDMA for the discovery andfollow-up of other types of astronomical transients.<br

    Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022

    Full text link
    We present a campaign designed to train the GRANDMA network and its infrastructure to follow up on transient alerts and detect their early afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they are expected to be an electromagnetic counterpart of gravitational-wave events. Our goal was to improve our response to the alerts and start prompt observations as soon as possible to better prepare the GRANDMA network for the fourth observational run of LIGO-Virgo-Kagra (which started at the end of May 2023), and future missions such as SM. To receive, manage and send out observational plans to our partner telescopes we set up dedicated infrastructure and a rota of follow-up adcates were organized to guarantee round-the-clock assistance to our telescope teams. To ensure a great number of observations, we focused on Swift GRBs whose localization errors were generally smaller than the GRANDMA telescopes' field of view. This allowed us to bypass the transient identification process and focus on the reaction time and efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB triggers were selected, nine fields had been observed, and three afterglows were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA telescopes and 17 amateur astronomers from the citizen science project Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our long-term follow-up of the host galaxy allowed us to obtain a photometric redshift of z=0.82±0.09z=0.82\pm0.09, its lightcurve elution, fit the decay slope of the afterglows, and study the properties of the host galaxy

    Mutant p53 as a guardian of the cancer cell

    Get PDF
    Forty years of research have established that the p53 tumor suppressor provides a major barrier to neoplastic transformation and tumor progression by its unique ability to act as an extremely sensitive collector of stress inputs, and to coordinate a complex framework of diverse effector pathways and processes that protect cellular homeostasis and genome stability. Missense mutations in the TP53 gene are extremely widespread in human cancers and give rise to mutant p53 proteins that lose tumor suppressive activities, and some of which exert trans-dominant repression over the wild-type counterpart. Cancer cells acquire selective advantages by retaining mutant forms of the protein, which radically subvert the nature of the p53 pathway by promoting invasion, metastasis and chemoresistance. In this review, we consider available evidence suggesting that mutant p53 proteins can favor cancer cell survival and tumor progression by acting as homeostatic factors that sense and protect cancer cells from transformation-related stress stimuli, including DNA lesions, oxidative and proteotoxic stress, metabolic inbalance, interaction with the tumor microenvironment, and the immune system. These activities of mutant p53 may explain cancer cell addiction to this particular oncogene, and their study may disclose tumor vulnerabilities and synthetic lethalities that could be exploited for hitting tumors bearing missense TP53 mutations

    IceCat-1: The IceCube Event Catalog of Alert Tracks

    Get PDF
    We present a catalog of likely astrophysical neutrino track-like events from the IceCube Neutrino Observatory. IceCube began reporting likely astrophysical neutrinos in 2016, and this system was updated in 2019. The catalog presented here includes events that were reported in real time since 2019, as well as events identified in archival data samples starting from 2011. We report 275 neutrino events from two selection channels as the first entries in the catalog, the IceCube Event Catalog of Alert Tracks, which will see ongoing extensions with additional alerts. The Gold and Bronze alert channels respectively provide neutrino candidates with a 50% and 30% probability of being astrophysical, on average assuming an astrophysical neutrino power-law energy spectral index of 2.19. For each neutrino alert, we provide the reconstructed energy, direction, false-alarm rate, probability of being astrophysical in origin, and likelihood contours describing the spatial uncertainty in the alert\u27s reconstructed location. We also investigate a directional correlation of these neutrino events with gamma-ray and X-ray catalogs, including 4FGL, 3HWC, TeVCat, and Swift-BAT

    Constraining High-energy Neutrino Emission from Supernovae with IceCube

    Get PDF
    Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae, and for combined emission from the whole supernova sample through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. The overall deviation of all tested scenarios from the background expectation yields a p-value of 93% which is fully compatible with background. The derived upper limits on the total energy emitted in neutrinos are 1.7×1048^{48} erg for stripped-envelope supernovae, 2.8×1048^{48} erg for type IIP, and 1.3×1049^{49} erg for type IIn SNe, the latter disfavouring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that strippe-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9% respectively to the diffuse neutrino flux in the energy range of about 103^3−105^5 GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions

    Constraining High-energy Neutrino Emission from Supernovae with IceCube

    Get PDF
    Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae as well as for combined emission from the whole supernova sample, through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. All scenarios were tested against the background expectation and together yield an overall p-value of 93%; therefore, they show consistency with the background only. The derived upper limits on the total energy emitted in neutrinos are 1.7 × 1048^{48} erg for stripped-envelope supernovae, 2.8 × 1048^{48} erg for type IIP, and 1.3 × 1049^{49} erg for type IIn SNe, the latter disfavoring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that stripped-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9%, respectively, to the diffuse neutrino flux in the energy range of about [ 103^3–105^5] GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus, core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions

    Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing

    Get PDF
    We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011–2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2Ξ23=0.51±0.05 and Δm232=2.41±0.07×10−3  eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties

    Measurement of Atmospheric Neutrino Mixing with Improved IceCube DeepCore Calibration and Data Processing

    Get PDF
    We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011-2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a detailed treatment of systematic uncertainties, with significantly higher level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin⁥2Ξ23=0.51±0.05\sin^2\theta_{23} = 0.51\pm 0.05 and Δm322=2.41±0.07×10−3eV2\Delta m^2_{32} = 2.41\pm0.07\times 10^{-3}\mathrm{eV}^2, assuming a normal mass ordering. The resulting 40\% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties
    • 

    corecore