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Introduction

At the global level several factors contribute to a significantly 
increased risk of appearance and spreading of new and re-emerg-
ing infectious diseases. Global warming influences the geo-
graphical distribution of important vector organisms for several 
dangerous pathogens1,2 and the increase in worldwide travel and 
mobility is an effective driving force for the spread of infectious 
diseases. The unexpected appearance of Severe Acute Respiratory 
Syndrome (SARS) in 20023 and the related Middle East 
Respiratory Syndrome (MERS) in 2013,4 the pandemic H1N1 
influenza virus in 20095 and the continued threat of H5N1 and 
H7N9 bird flu,6,7 serve as examples of emerging and re-emerging 
diseases, that require swift control measures.

The potential threat from emerging and dangerous infections 
calls for innovative and efficient control strategies in order to 
increase the general preparedness level. When facing an emer-
gency situation with a new pathogen, time is limited and efforts 
to accelerate the otherwise time-consuming vaccine development 
process at all stages are critical. The use of correlates of protec-
tion (COPs) may play a key role in speeding up vaccine develop-
ment from design to licensure in various ways. In this context we 
define COPs as immune responses that directly can be linked to 
protection in a causal way, whereas surrogates or co-correlates 
are understood as responses co-occurring with protection but not 
necessarily representing a causal mechanism.

In the design phase, vaccine composition and delivery systems 
may be selected to elicit known or presumed COPs. In the clinical 
phase, vaccine efficacy measurements performed by monitoring 
early biomarkers in validated assays instead of measuring protec-
tion against clinical disease may provide a faster, but still reliable, 
outcome. COPs may also be used to bridge preclinical protec-
tion studies performed in animal models with clinical studies, or 
connect early with late phase trials, supporting a faster and more 
evidence-based progress toward licensure. If it is not feasible to 
assess clinical efficacy, the size and duration of phase 3 trials can 
be reduced by using COPs to predict vaccine efficacy.

To be able to apply COP-based vaccine design to new and 
re-emerging infections for which COPs have not yet been dis-
covered, the establishment of general predictive rules based on 
the most important classes of pathogens is needed. This can be 
achieved by systematic extraction of the existing knowledge of 
protective immune responses against a large spectrum of relevant 
bacteria and viruses combined with knowledge of the immune 
mechanisms induced by different vaccine concepts. To demon-
strate the applicability of this principle, we have reviewed the 
current literature on COPs for an infectious disease for which 
traditional vaccine platforms are being constantly improved 
and multiple novel vaccine concepts have reached clinical tri-
als: influenza. The 2009 influenza pandemic reminded us that 
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New and reemerging infectious diseases call for innovative 
and efficient control strategies of which fast vaccine design 
and development represent an important element. In emer-
gency situations, when time is limited, identification and use of 
correlates of protection (COPs) may play a key role as a strate-
gic tool for accelerated vaccine design, testing, and licensure. 
We propose that general rules for COP-based vaccine design 
can be extracted from the existing knowledge of protective 
immune responses against a large spectrum of relevant viral 
and bacterial pathogens. Herein, we focus on the applicability 
of this approach by reviewing the established and up-coming 
COPs for influenza in the context of traditional and a wide array 
of new vaccine concepts. The lessons learnt from this field may 
be applied more generally to COP-based accelerated vaccine 
design for emerging infections.
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several general aspects of vaccine development are important to 
improve pandemic preparedness. Among the most important are 
the needs for universal vaccines comprising conserved antibody 
and T-cell targets to induce cross-reactive immunity in all age 
groups, improved adjuvants, and vaccine production platforms 
which allow fast manufacture. Recently proposed novel COPs 
for influenza are mostly based on clinical data with sufficient 
power to support prediction of protection. Importantly, the 
development of these COPs which goes far beyond the tradi-
tional hemagglutination inhibition (HI) assay paves the way for 
the rational design and faster evaluation of new and promising 
vaccine concepts. We suggest that the recently obtained knowl-
edge in this field, as summarized herein, is not only important 
for improved vaccination against influenza, but due to its unique 
size and scope can also be generalized and applied to accelerate 
vaccine design and development for a wider range of new and 
reemerging infections.

Classical Influenza Vaccines and Traditional COPs

Influenza viruses are enveloped viruses that contain a seg-
mented genome of 8 different negative sense single-stranded RNA 
molecules. The envelope and its 3 integral membrane proteins 
hemagglutinin (HA), neuraminidase (NA) and the ion-channel 
M2 overlay a matrix protein (M1), which encloses the virion core. 
In this core the ribonucleoprotein (RNP) complex, which con-
sists of the viral RNA segments coated with nucleoprotein (NP) 

and the RNA-dependent RNA polymerases (PB1, PB2, and PA) 
are found (Fig. 1).

Seasonal influenza is dominated by A and B viruses. Influenza 
A viruses are divided into subtypes according to the combina-
tion of different HA and NA antigens occurring at the surface. 
Among many possible subtypes of influenza A viruses (17 HA 
and 9 NA subtypes), H1N1 and H3N2 are the most predomi-
nant subtypes currently circulating among humans. Seasonal 
influenza is associated with the annually occurring sequence 
variation in HA and NA (antigenic drift), whereas influenza pan-
demics usually occur as a result of new combinations of HA and 
NA subtypes (antigenic shift). Due to the continuous antigenic 
drift of HA (and NA), the composition of virus-derived vaccines 
against seasonal influenza must be updated on an annual basis to 
achieve the necessary matching between HA antibody specificity 
and the prevalent circulating influenza strains.

Two main types of vaccines for seasonal influenza are cur-
rently licensed: inactivated influenza vaccines (IIV) mostly for 
intramuscular administration, and live attenuated influenza vac-
cines (LAIV) for intranasal delivery. Both vaccine types are usually 
trivalent comprising 2 A subtypes (currently H1N1 and H3N2) 
and a single B component, yet quadrivalent vaccines containing an 
additional B component now also emerge on the market (Table 1). 
Inactivated vaccines may contain whole inactivated virus particles 
(WIV vaccines), virus disrupted by detergents or solvents (split 
vaccines) or purified HA and NA (subunit vaccines).

Split and subunit vaccines are today the most frequently used 
products and represent the conventional vaccine concepts for 

Figure 1. Nomenclature and localization of the major external and internal protein antigens of the influenza virus.
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seasonal vaccination. LAIV most often consist of cold adapted 
and temperature sensitive viral strains, and have been licensed 
both in US (2003) and Europe (2011). There are indications that 
LAIV may be more efficacious in young individuals (6 mo to 18 
y), whereas no apparent difference in efficacy of LAIV and IIV 
has been demonstrated in adults (reviewed in8).

While most IIV are non-adjuvanted, a few have been opti-
mized by improved formulations to generate better protection 
both among the elderly9 and young children,10 who typically 
respond poorly to vaccination. Manufacturing of classical influ-
enza vaccines may further vary with respect to virus propagation 
procedures and inactivation methods. For (pre)pandemic pur-
poses, several IIV and LAIV vaccines have been licensed, some of 
which are cell based and/or adjuvanted, and widely used in vari-
ous age groups during the 2009 influenza pandemic. Recently, 
as a first non-classical influenza vaccine, a recombinant bacu-
lovirus expressed trivalent HA0 based vaccine (FluBlok®) was 

introduced on the market, a technological advance which may 
speed up mass production of vaccines for novel viral strains11 
(Table 1).

Minimal requirements for traditional seasonal influenza 
vaccines

While annual updating of an already licensed vaccine in many 
cases does not include immunogenicity testing, introduction of 
a new seasonal influenza vaccine requires a licensing application 
which should include satisfactory evidence of immunogenicity 
and safety as laid down by the regulatory authorities (EMA in 
Europe and FDA in USA). The humoral responses induced in the 
required trials are currently evaluated with the traditional “gold 
standard” COP for influenza: titer of antibodies inhibitory for 
the major surface antigen hemagglutinin (HA).12 HA is the viral 
receptor-binding protein, and antibodies that are directed to epi-
topes located within or in close proximity to the receptor-binding 
site, can prevent binding of the virus to its receptor on the host 

Table 1. Approved seasonal and (pre)pandemic influenza vaccines

Vaccine purpose strain Vaccine type Adjuvant Route Trade names1 (manufacturer)

Seasonal
annual strains2

IIV
whole virus

AlPO4 im Fluval AB (Omninvest)

IIV split none
none
none
none
none
none
none
none

im
im
im
im
im
im
id
im

FluLaval3 (ID Biomedical)
Fluarix, Fluviral (GlaxoSmithKline)
Enzira4 (Pfizer)
Vaxigrip, Fluzone3 (Sanofi Pasteur)
Afluria4 (Merck)
GC FLU (Green Cross Corporation)
Intanza, IdFlu, Fluzone Intradermal (Sanofi Pasteur)
Fluvax4 (bioCSL)

IIV subunit none
none
none
MF59C.I
none
virosomal lipids

im
im
im
im
im
im

Influvac, Imuvac, Fluvaccinol (Abbott)
Agriflu, Agrippal, Fluvirin,4 Optaflu5 (Novartis)
Mutagrip (Sanofi Pasteur)
Fluad (Novartis)
FluCelvax4,5 (Novartis)
Inflexal® V4 (Berna Biotech, Crucell)

LAIV none in Fluenz, Flumist seasonal3 (MedImmune)

Recombinant protein none im Flublok®6 (Protein Sciences)

Pandemic 2009
H1N1 A/Cal7/2009

IIV
whole virus

none
AlPO4

im
im

Celvapan H1N15 (Baxter)
Fluval P (Omninvest)

IIV split none
none
none
AS03

im
im
im
im

Panvax4 (Merck)
Panenza (Sanofi Pasteur)
Green Flu-S (Green Cross Corporation)
Pandemrix (GlaxoSmithKline)

IIV subunit none
MF59C.1

im
im

Fluvirin-H1N14 (Novartis)
Celtura,5 Focetria (Novartis)

LAIV none
none

in
in

Fluenz, Flumist pandemic (Medimmune)
Nasovac (Serum Institute of India)

Pre-pandemic
various avian strains

IIV
whole virus

AlPO4
AlOH3/PO4
none

im
im
im

Fluval H5N1 (Omninvest)
Daronrix (GlaxoSmithKline)
Celvapan H5N1,5 Vepace5 (Baxter)

IIV split AS03 im Prepandrix, Adjupanrix (GlaxoSmithKline)

IIV subunit MF59C.1 im Foclivia, Aflunov (Novartis)

1Vaccines are derived from processed influenza virions propagated on embryonated chicken eggs and inactivated using formaldehyde unless otherwise 
indicated 2; seasonal vaccines are mostly trivalent (2 A strains and 1 B strain) unless otherwise indicated 3; available as quadrivalant vaccine (2 A strains and 
2 B strains); 4β propiolactone virus inactivation; 5cell based virus propagation; 6 high dose trivalent uncleaved HA (rHA0) based on baculovirus expression in 
insect cells.
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Table 2. Novel influenza vaccine approaches in clinical development categorized according to the primary mode of protection intended to be induced, 
vaccine type, and antigen targets

Novel concepts:
major mode of protection1 Vaccine type (Ag) Examples of concepts in clinical development Ref.2

More broadly reactive antibodies Recombinant protein or 
synthetic polypeptide-based 
vaccines
(HA, NP, M1)

•	 Multimeric-001, purified recombinant protein (E. coli) containing 
9 conserved epitopes from HA, NP, and M1, non-adjuvanted or 
ISA-51, i.m. (BiondVax)

140

DNA vaccines
(HA, NP, M2e, NA)

•	 Monovalent (H5) or trivalent (H5-NP-M2) plasmid DNA, 
formulated with Vaxfectin® adjuvant, i.m. (Vical Inc.)

•	 VGX-3400,3 NA, M2e, NP, and subtype specific HA regions, i.d. 
and i.m. electroporation (Inovio)

•	 HA expressing plasmids adjuvanted with DEI-LT (DNA encoded 
Immunostimulator-lanile Toxin) on gold particles, epidermal 
(PowderMed)

141

118, 30

142

Particulate vaccines:
virosomes, VLP,4 BLP5

(HA, NA, M1)

•	 HA, NA, M1 VLP produced in insect cells by baculovirus 
infection, i.n. (NovaVax)

•	 Alhydrogel® formulated H5-VLP produced via the bacterial 
vector A. tumefaciens in tobacco leaves, i.m. (Medicago)

•	 Matrix MTM adjuvanted H5N1 virosomes (Berna, Crucell)
•	 FluGEM®, IIV antigens mixed with self-adjuvanting BLP from 

inactivated L. lactis bacteria, i.n. (Mucosis)

30, 60

143

144
112 (6)

Alpha virus-based vaccines 
(HA)

•	 H3 expressed in propagation-defective, single-cycle RNA 
replicon α virus vector system producing virus-like replicon 
particles (VRP), i.m. (AlphaVax)

145

Heterologous fusion constructs
(HA cleavage site, NP, M2e)

•	 Qbeta VLP, M2e fused to HB core particle, spontaneously 
packaging bacterial RNA carrying ligands for TLR7 and TLR3, i.n. 
(CYTOS Biotechnology)

•	 M2e and HAcleavage peptide-OMPC construct with alum or 
proprietary adjuvant, i.m. (Merck)

•	 M2e-Flagellin7 fusion construct (VAX102) i.m. (VaxInnate)
•	 ACAM-FLU, recombinant M2e-HB core Ag fusion construct, non-

adjuvanted, alum or QS21, i.m. (Acambis)
•	 N8295: M2e-NP fusion protein covalently linked to CpG, i.m. 

(Dynavax)

110

71,30

146-148
147, 30

72

Cross-reactive
T cell immunity

Vector delivery of Ag MVA, 
adenovirus
(HA, NP, M1)

•	 MVA-NP-M1, replication defective MVA virus, i.m. or i.d. 
(Impfstoffwerk, Jenner Institute)

•	 Ad4-H5-Vtn, oral, also induce antibody responses (PaxVax)
•	 ChAdOx1 NP+M1, i.m, (Clinical Biomanufacturing Facility, 

University of Oxford)

91

95
96

Peptide based: conserved 
epitopes
(NP, M1, M2)

•	 Flu-v, ISA-51 adjuvanted synthetic vaccine containing 6 
conserved CTL epitopes (NP, M1, M2), s.c. (SEEK)

•	 Flunisyn™ (FP01), depot forming nanoparticles with 6 
conserved T cell peptide epitopes fused to a fluorocarbon tail, 
i.m. (Immune Targeting Systems, ITS)

93

ITS 
website

Mucosal sIgA
immunity

LAIV •	 LAIV NS1-deletion, HA altered cleavage, i.n., also induce T cell 
immunity (Green Hills)

30

Mucosal recombinant viral 
vector delivery
(HA)

•	 Recombinant (replication defective) Ad5 delivery of HA, i.n. 
(Vaxin)

•	 Recombinant (replication defective) Ad5-TLR3 ds RNA 
adjuvanted delivery of H5, oral (Vaxart)

113

114

Mucosal non-replicating 
vaccines (HA)

•	 HA split antigens mixed with neisserial OMP (FluINsureTM), i.n. 
(GSK-ID Biomedical)

111

Mucosal delivery systems •	 Nasal, oral, sublingual, needle-free dermal administration, 
mucosal adjuvants

31

1In addition to the major mode of protection, several of the vaccine concepts also induce other types of immunity: all DNA vaccines, particulate vaccines, 
α virus vaccines, Multimeric-001, LAIV and viral vector delivery vaccines also induce T cell immunity; 2In addition to references, information is also taken 
from the websites of companies; 3preclinical data for VGX-3400; 4VLP, viral like particle; 5BLP, bacterial like particle; 6preclinical data for FLU-GEM®; 7Flagellin-
platform is also used for potentiating the induction of subtype specific HI titers to H1 (VAX125, VAX128), H5, and H7.
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cells. It is well documented that the induction of HA specific 
antibodies is an important COP against infection, provided that 
these antibodies have the correct strain-specificity.13 Therefore, 
the induction of HA-antibodies that block receptor-binding is 
used as a correlate of vaccine efficacy and a current criterion for 
regulatory approval. Pre- and post-vaccination sera obtained in 
the registration trials from subjects of different age groups are 
tested, mostly in the hemagglutination inhibition (HI) assay. In 
this assay, inhibition of virus-induced agglutination of red blood 
cells by HA antibodies in serum samples can be measured as the 
HI titer. Based on studies with seasonal influenza A strains in 
adults, an HI titer ≥ 40 has been defined as an immunologic 
correlate corresponding to a 50% reduction of risk of contracting 
influenza.12,13 For a seasonal vaccine to be registered it must meet, 
for each tested age group and all viral strains, at least one of 3 
defined criteria for immunogenicity as evaluated by the HI assay: 
the sero-protection rate, the sero-conversion rate, and the mean 
HI titer increase. Notably, for registration of pandemic vaccines 
all 3 criteria must be fulfilled.

Limitations of using HI as COP for evaluation of influenza 
vaccines

Although an HI titer ≥ 40 to a specific influenza strain 
remains indicative of protection, evidence is accumulating that 
the relevance of the HI assay may differ substantially between 
different vaccines and populations tested. First, in the human 
challenge model it has proved difficult to infect individuals with 
HI titers as low as ≥8,14 and LAIV show protective efficacy inde-
pendently of HI titers. Being administered intranasally, LAIV 
will prime local mucosal immune responses and secretory IgA, 
not measured in the HI assay, but most likely contributing to 
protection.15 Second, poor sensitivity of the HI assay has been 
found for neutralizing antibodies that recognize the conserved 
HA stalk region, as well as for antibodies specific for avian A 
virus subtypes H5 and H7, and for B strains, warranting techni-
cal modifications.16,17 Third, the use of the adult correlate of pro-
tection (HI titer ≥ 40) may not be appropriate when evaluating 
vaccination of children. As reported by Black et al. a cutoff of 110 
was required to predict the conventional 50% clinical protection 
rate, and to predict an 80% protective level, which would seem 
more desirable from a public health perspective, a titer of 330 
was required.18 This discrepancy may in part relate to the ability 
of the HI assay to measure both IgM and IgG antibodies, which 
may lead to an ‘overrating’ of the immune response in naïve chil-
dren,19 and measuring IgG only may therefore correlate better 
with protection in pediatric trials. On the other hand, alternative 
immunological endpoints, such as antibody responses to other 
viral proteins or cell mediated immune parameters, might better 
reflect vaccine efficacy in children.19-21 In fact, vaccine-induced 
T-cell responses have been suggested as a better COP than anti-
body responses not only in young children,22 but also in adults 
over 65 y of age.23 The primary goal of vaccination, specifically in 
the elderly, is to provide protection against clinical disease, rather 
than sterilizing immunity. Thus, enhanced vaccine-mediated 
protection against influenza illness in older individuals should 
probably be assessed by changes in cellular immunity, in addition 
to standard HI measurements.24

These and other studies have increased the awareness among 
scientists, vaccine manufacturers and regulatory authorities that 
new COPs are needed, not only for improved evaluation of tra-
ditional influenza vaccines in different target groups, but also 
for the development of new vaccine concepts.19-21,25,26 Various 
new seasonal and (pre)pandemic vaccine approaches use novel 
production- or formulation platforms that do focus on inducing 
strong(er) HI titers to the immuno-dominant globular head(s) 
of HA subtypes,27-29 such as FluBlok®.11 For other new vaccine 
concepts in clinical development, the traditional HI titer may 
not serve as a relevant COP at all. Dependent on the antigens 
targeted, such as conserved domains of HA, NA, M2e, or uni-
versal T-cell antigens (like NP, PA, PB, or M1), and dependent 
on their formulation or expression platform,27-39 other COPs 
should be addressed. These include broadly virus neutralizing 
activity, antibody dependent cellular cytotoxicity (ADCC), 
cross-reactive T cell responses, or mucosal secretory IgA (sIgA). 
As is the case for serological assays,40,41 the application of any 
cellular biomarkers of protection will require standardized and 
harmonized assays with inactivated or low pathogenicity viral 
strains and criteria to compare results between laboratories. 
Although a wide range of potential COP assays covering both 
antibody- and cell-mediated immune responses are in the pipe-
line, they still need further evaluation for clinical performance 
and methodological validation.

Concomitantly, a diverse landscape of upcoming influenza 
vaccine approaches has boosted the exploration of new immu-
nological end-points to be used for assessing vaccine immuno-
genicity and effectiveness of immune responses. In a broader 
context, this development is not only important for influenza, 
but the lessons learnt from this field may also pave the way for 
rational development of vaccines for other diseases based on the 
same principles. Thus, the putative trendsetting role of influ-
enza can in this regard be attributed to both development of 
principally new vaccine concepts and a substantial broadening 
of the repertoire of COPs necessary for efficient evaluation of 
novel vaccines in general.

Influenza Vaccine Concepts Requiring New COPs

A variety of innovative influenza vaccine approaches in clini-
cal development, that are not solely based on HI assays, broadly 
target one or more of the following principles of protection: (1) 
induction of more broadly cross-reactive serum antibodies, (2) 
cross-reactive cellular immunity, and/or (3) mucosal immune 
responses (Table  2). Potential new influenza COPs relevant 
for these different vaccine platforms have been identified from 
preclinical and clinical studies, as reviewed from various per-
spectives.20,21,25,42,43 Although some immunological biomark-
ers only can be considered as co-correlates or surrogates, and 
not true COPs, they may still play a role in evaluating vaccine 
candidates.44 In children, serum HI titer and nasal IgA45 have 
been described as co-correlates. In addition, non-neutralizing 
antibody- and T-cell responses have also been reported as co-
correlates of protection.46 Nevertheless, despite the complexity of 
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the protective immune response, a good understanding of the 
underlying mechanisms is fundamental to accelerate the develop-
ment of any novel influenza vaccine concepts. Importantly, when 
applied in a broader context of vaccinology, this knowledge may 
also play an important role in rational development of vaccines 
against other diseases.

Broadly cross-reactive antibody responses to envelope struc-
tures as COPs

Antibody responses elicited toward HA primarily bind to the 
hyper-variable globular head region and only recognize homolo-
gous strains within a given virus subtype. This is why the efficacy 
of conventional seasonal influenza vaccines is mostly limited to 

Table 3. Established and emerging COPs for influenza vaccine development

COP assay
immune parameter

Ag specificity

Mode of protection for
immune response

Examples of relevant 
vaccine concepts

Status of COP assay and comments

HI assay
Serum IgG
HA globular head

Preventing intracellular infection to be 
established:
Inhibition of binding to cell surface receptor

WIV, split, subunit
Virosomes
Recombinant Ag
DNA vaccines

Well established as COP (EMA, FDA)12,13

Limit for protection defined (HI titer > 40)
Variation with virus subtype and target age 
group
Standardized but still large variability 
between labs.

HA ELISA
Serum IgG
HA stem region

Preventing intracellular
infection to be established:
Virus neutralization
Inhibition of fusion with the endosomal 
membrane

Recombinant protein or 
polypeptide based Ag with 
relevant HA sequences

Experimentally demonstrated47-49

More data needed
Conserved among subtypes
Limit for protection not defined
Relevant for universal vaccines

NA ELISA and NAI assay
Serum IgG
NA

Preventing mature virus
to be released after intracellular infection:
Inhibition of NA enzyme activity

LAIV
WIV, split, subunit, 
Virosomes

Experimentally established25,42,43,56,57

Broadly cross-reactive non-neutralizing 
antibodies
Limit for protection not defined

VN assay
Serum IgG
HA, NA

Neutralizing virus:
Preventing intracellular infection to be 
established

LAIV
WIV, split, subunit,
Virosomes

Experimentally demonstrated25,42,43

More data needed
Limit for protection not defined

M2e ELISA
Serum IgG
M2e

Not virus neutralizing but reducing virus 
spread after intracellular infection (ADDC)

Recombinant fusion 
proteins: M2e sequence 
coupled to TLR ligands or in 
immunogenic particles

Demonstrated in animal models73

More data needed
Conserved among subtypes
Limit for protection not defined
Relevant for universal vaccines

IgA ELISA
Mucosal sIgA
HA, NA

Preventing virus to enter the body by 
neutralization at mucosal surfaces

Mucosally delivered vaccines: 
LAIV, WIV, and recombinant 
viral vector based delivery

Experimentally demonstrated45,99

More data needed
Limit for protection not defined

Cytotoxicity assays1

CD8+ and CD4+
T cell cytotoxicity
M1, M2, NP, PA, PB

Preventing severe clinical disease and death 
when infection is established by lysing 
infected cells

LAIV, WIV
Recombinant fusion protein, 
synthetic (poly)peptide 
or vector-based vaccines 
covering T cell epitopes

Experimentally established45,99

Granzyme B assay: standardized, 
validated79,97

Flow based CD107a assay and Cr51 release 
assay used in a human challenge model83

Lower limit for protection not defined
Relevant for universal vaccines

INFγ ELISPOT1

INFγ pos. cells
M1, M2, NP, PA, PB

Preventing severe clinical disease and death 
when infection is established

LAIV, WIV
Recombinant fusion protein, 
synthetic (poly)peptide 
or vector-based vaccines 
covering T cell epitopes

Experimentally demonstrated in humans22

Frequency of INFγ producing cells
IFNγ+IL2- CD8+ phenotype77

Standardization possible by commercial kits
Proposed limit for protection: 100 SFC/mill. 
PBMC
Relevant for universal vaccines

Cytokine assays1
Cytokine profiles
M1, M2, NP, PA, PB

Preventing severe clinical disease and death 
when infection is established by helping 
(other) T- and B cell functions

LAIV, WIV
Recombinant fusion protein, 
synthetic (poly)peptide 
or vector-based vaccines 
covering T cell epitopes

Experimentally established in humans23,97

IFNγ/IL10 ratio: standardized, validated 
assay23,97

IL-21 production81

Lower limit for protection not defined
Relevant for universal vaccines

1Require cell isolation and (depending on study design) cryopreservation.
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circulating strains with a close antigenic match. More broadly 
reactive antibody responses seem to be directed at less accessible 
epitopes spanning the interface of properly folded HA trimers, or 
at the more membrane proximal stalk region of the HA molecule. 
This stalk region of HA is relatively conserved and is involved in 
fusion with the endosomal membrane of the host cell. Broadly 
neutralizing antibodies that bind to this region have been shown 
to inhibit infection with influenza A47-49 and B strains.50 To target 
these less variable HA regions more efficiently than conventional 
virus derived vaccines, several expression platforms deliver-
ing full-length HA have entered clinical development. These 
include recombinant and fusion-proteins, particles (inactivated 
virions, virosomes, VLPs, BLPs), replicon systems, and DNA 
vaccines (Table 2). Recently, a phase I trial of an intramuscu-
larly given H5 DNA prime, split vaccine boost regimen provided 
evidence for the induction of anti-stalk antibodies in humans.51 
New approaches only targeting the stalk region showed feasibil-
ity in preclinical studies, but these concepts have not yet entered 
clinical development.52-54 Serological assays, such as ELISA and 
a pseudotype neutralization assay49,55 may be used to assess the 
induction of HA stalk specific antibodies (Table 3).

The other major viral envelope protein and component in var-
ious novel influenza vaccine approaches is NA. Its function as a 
sialic acid cleaving enzyme is crucial for efficient release of virions 
from infected cells, acting in the late stage of the virus replication 
cycle. Antibodies directed against the enzymatic site can block 
its function and serum anti-NA antibodies have been associated 
with resistance to clinical disease.56,57 Hence, unlike antibodies 
against HA which can prevent infection, NA-specific antibodies 
limit the release and further spread of viral particles, and thereby 
mainly prevent serious disease and fatal outcome. Although 
NA antibodies are considered mostly as subtype specific, they 
also have cross-reactive potential.58,59 Clinically tested vaccine 
approaches including NA involve DNA based vaccines30 and par-
ticulate forms, such as virus like particles (VLP)30,60 (Table 2). 
Notably, these platforms can also induce various forms of cellular 
immunity. The induction of serum NA inhibiting (NI) antibod-
ies is suggested to be an independent predictor of immunity to 
naturally occurring influenza in the presence of HI antibodies.61 
Various non-standardized methods are available to assess anti-
NA antibody responses,62-65 including assays that minimize steric 
hindrance by anti-HA antibodies.57,66,67

The M2 protein is a tetrameric membrane protein that forms 
an ion channel and plays an important role in the un-coating 
of the viral genome during the early steps of the virus replica-
tion cycle. M2e (the extra cellular domain of M2) is highly con-
served in all influenza A subtypes. M2-specific antibodies tend 
to recognize virus particles poorly, do not neutralize the virus, 
and antisera against virus contain few M2-specific antibodies. 
However, M2e is highly expressed in infected cells, and anti-M2e 
antibodies binding to these cells can induce antibody dependent 
NK cell mediated killing (ADCC), complement-mediated lysis, 
or phagocytosis.68,69 As the M2-protein is conserved across influ-
enza A strains, it has been regarded as a basis for the development 
of universal vaccines.34,70 Despite the fact that neither M2e sero-
prevalence after recurrent infections with circulating influenza 

strains nor vaccination with LAIV or WIV vaccines indicate 
a strong immunogenicity profile, this vaccine concept is still 
pushed in the clinical pipeline38,48,71,72 (Table 2). Assays to evalu-
ate M2e antibody responsiveness may be based on linear peptides 
or conformational tetrameric forms of the M2e antigen.73

Besides the traditional HI assay, several other antibody-based 
assays, as mentioned here, have been demonstrated to play an 
important role in evaluating new vaccine concepts in the devel-
opment process (Table 3). However, any general assessment of 
their relative strength and value as potential COPs in clinical 
trials is complicated, due to the fact that their relevance will 
be dependent of several factors: vaccine concept to be tested, 
immune responses to be targeted, and even the population to 
be vaccinated. Thus, the broad repertoire of COP related assays 
now available in the influenza field, including both humoral and 
cellular immune responses, may serve as a necessary menu from 
which the relevant immune assays should be chosen.

Cross-reactive T cell responses as COPs
In contrast to neutralizing antibodies directed mainly against 

the highly variable surface antigens (HA and NA) of the influ-
enza virus, cellular immune responses mediated by T cells are 
mainly directed against epitopes of internal and highly conserved 
antigens (M, NP, PA, PB). Antibody-mediated immunity mainly 
acts to prevent viral entry into and release from cells, while T-cell 
mediated immunity plays an important role in clearance of estab-
lished infection and reduction of disease severity and mortality. 
Although the complementary protective role of T-cells has been 
known for a long time,74 it has recently been highlighted by the 
demonstration of pre-existing T-cell immunity against the 2009 
H1N1 pandemic strain, leading to protection against severe dis-
ease in the absence of specific antibody responses.75

Cellular effector functions related to protection can be 
mediated by 2 conventional T cell subsets. Cytotoxic CD8+ T 
cells recognize peptide epitopes generated from cytosolic viral 
proteins by proteasomal degradation and presented by MHC 
class I molecules on the surface of infected cells. Upon activa-
tion, these T cells secrete antiviral cytokines and release per-
forin and granzymes, of which the latter initiate apoptosis of 
the infected target cell. In a prospective study low granzyme B 
levels correlated with the risk of developing influenza disease in 
older adults.76 More recently levels of pre-existing IFNγ+IL2- 
CD8+ T cells were shown to correlate with low total symp-
tom score during the 2009 pH1N1 pandemic.77 Importantly, 
granzyme B levels were also shown to correlate with protec-
tion and enhanced cytotoxic activity after influenza vaccina-
tion.23,78-80 CD4+ T cells, on the other hand, recognize viral 
epitopes that have been processed in the endo-lysosomal path-
way of antigen presenting cells and presented by MHC class II 
molecules. These cells act not only by orchestrating the respon-
siveness of CD8+ T cells and B cells by secreting Th1 (IFNγ, 
TNFα), Th2 (IL-4, IL5, IL13), Th17 (IL-17), Tfh (IL21), or 
regulatory (IL-10, TGF-β) cytokines,81 but also by directly 
killing infected cells.82 Pre-existing influenza-specific CD4+ 
T cells were recently found to correlate with decreased viral 
shedding and reduced severity of illness following experimen-
tal influenza infection of humans.83 In addition, a decline in 
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the INF-γ/IL-10 ratio produced by PBMC stimulated in vitro 
with influenza virus was shown to be associated with increased 
risk for influenza disease in the elderly.23 Induction of CD4+ 
T cell immunity may correlate with the serological response to 
influenza vaccination: the CD4+ Th1 response after primary 
H5N1 vaccination predicted protective antibody levels after 
booster doses,84,85 and frequencies of IFN-γ and IL-17 produc-
ing CD4+ T cells correlate with HI responses in younger adults 
after seasonal vaccination.86 While influenza specificT cell 
responses seem particularly relevant as COPs22,23,78 and indeed 
can contribute to cross-protective immunity,87 tight regulation 
is needed to avoid immuno-pathological effects after vaccina-
tion as described for natural infection.88-90

Of the most widely used seasonal influenza vaccines, split 
and subunit vaccines elicit CD4+ T cells specific for epitopes 
from HA and NA subtypes, while LAIV can also induce CD4+ 
and CD8+ T cell responses to epitopes from internal proteins. 
Multiple vaccine candidates using liver vectors or particulate 
formulations are in clinical development specifically designed to 
induce cross-reactive T cell immunity against internal antigens 
or their epitopes91-96 (Table 2). For these and several other novel 
platforms that deliver viral antigens into the MHC class I or II 
processing pathway, either as recombinant live attenuated virus, 
recombinant synthetic polypeptide, DNA, α-virus, or as formu-
lated particles (Table 2), standardized CD8+ and CD4+ T cell 
assays are needed to assess vaccine effectiveness and to compare 
results between different laboratories (Table 3).

Granzyme B is a key mediator of cytolytic activity of CD8+ T 
cells and an assay based on its enzymatic activity (serine protease) 
has been developed79 and recently standardized and validated by 
several laboratories.97 This assay warrants application to evaluat-
ing protective T-cell immunity in clinical trials. To probe the 
different functional cytokines released by CD4+ T-helper cells 
that support the induction of cellular immune responses (INF-γ, 
TNF-α, and IL2), promote antibody responses (IL4, IL5, IL13), 
or play a regulatory role (TGF-β, IL10), various assays are avail-
able. Multicolor flow cytometry has the advantage of combin-
ing the characterization of cell surface markers and intracellular 
production of multiple cytokines at the single cell level. Based 
on this approach various subsets of multifunctional T cells have 
recently been proposed as predictors of protection.77,81,83 Besides 
standardized ELISA assays, it is also possible to measure a wide 
range of secreted Th1 and Th2 cytokines in multiplexed assays 
following standardized and validated formats.97 Based on the 
established correlation between the INF-γ /IL10 balance and 
protection against disease,23 such assays should represent effi-
cient tools for evaluating vaccines in combination with assays for 
cytotoxic effector functions (granzyme B assay). The relevance 
of INF-γ has been further supported by the finding that the fre-
quency of virus specific INF-γ secreting cells could be correlated 
with protection against disease in a vaccination study of children 
by using an ELISPOT assay.22

The relative strength of the T cell based COPs discussed here 
is difficult to evaluate, since they are proposed on the basis of 
clinical studies with different design performed in various age 
groups, and only some of them are supported with data from 

animal models. Nevertheless, the evidence for CD8+ T cell medi-
ated cytotoxicity as a valid COP is strong, due to a large number 
of human and animal studies employing different experimental 
settings and technical assays to demonstrate the relevance of this 
effector function.23,43,74,76,79,98 Among the cytokine based COPs 
suggested, there are reasons to consider INF-γ positive T cells 
as a relevant correlate based on preclinical and clinical studies 
involving both controlled vaccine efficacy trials and population 
based observational studies.22,23,77 Although the recently reported 
protective role of T cell subsets expressing defined combina-
tions of cytokines and surface markers seems promising,77,81,83 
the experimental evidence and relative strength for such assays as 
COPs, so far may be assessed as somewhat weaker.

Mucosal immune responses as COPs
The principal advantage of mucosal immunization is the 

induction of local immune responses at the site of infection, 
in addition to systemic immunity. As recently reviewed,99 vari-
ous immune mechanisms at the mucosal surface of the human 
respiratory tract may act to prevent or clear influenza infec-
tion. It is well established that secretory IgA (sIgA) released 
at mucosal surfaces, as well as plasma derived IgG can control 
viral infection in the respiratory tract, but sIgA has a greater 
potential to cross-protect against heterologous influenza 
strains.100,101 Mucosal IgA is capable of neutralizing virus once 
inside mucosal epithelial cells.102 Local intracellular virus may 
also be cleared by cytolysis of infected cells by intra-epithelial 
cytotoxic CD8+ T cells, and vaccine induced NK cell mediated 
mechanisms have also been implicated in viral clearance. The 
superiority of LAIV over IIV noted in various meta-analyses of 
vaccine efficacy in different study populations (not only lim-
ited to children), is partly attributed to their differential capac-
ity to induce mucosal antibodies in the respiratory tract.103-105 
IIV are injected intramuscularly and induce good serum anti-
body responses but no mucosal antibodies, whereas intranasally 
administered LAIV efficiently prime both virus-specific muco-
sal IgA and serum IgG responses.106 Mucosal immune mecha-
nisms are mediated by the mucosa-associated-lymphoid tissue 
(MALT), a system of anatomically separate but functionally 
connected mucosal lymphoid sites, such as the nasopharynx-
associated lymphoid tissue (NALT) and the gut-associated 
lymphoid tissue (GALT).107,108 Successful priming at mucosal 
surfaces requires an appropriate type of vaccine antigen (patho-
gen derived complex particles), and in case of subunit antigens 
a mucosal adjuvant system is usually also necessary.109 Vaccine 
platforms most successful in activating mucosal immunity 
are either attenuated pathogens (like LAIV), replicating vec-
tors administered to mucosal tissues, or vaccines that mimick 
mucosal pathogens in particle size, innate properties and the 
ability to target mucosal dendritic cells (DC).108,110 Delivery 
routes that are effective at inducing mucosal immune responses 
in combination with novel influenza vaccine platforms include 
intranasal,30,60,110-113 oral,95,114 sublingual,115-117 and intradermal118 
administration. Some of these concepts are already in clinical 
development (Table 2).

An increasing body of evidence suggests that IgA responses 
contribute to protection against influenza, and this parameter 
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should be further evaluated as a valid COP, at least for mucosal 
vaccines. At present measurement of sIgA in mucosal secretions 
such as nasal lavages is not standardized, neither with regard 
to clinical sampling nor assay methodology.42 Current methods 
are mostly based on IgA ELISA,107,119 and the results were found 
to correlate to HI and VN titers in nasal lavage120 but not in 
serum. In Figure 2 we have illustrated the broadening of protec-
tive immune responses to influenza by highlighting some vac-
cine concepts in development compared with traditional split or 
subunit vaccination.

Systems Vaccinology: A New Approach for 
Discovery and Application of COPs in Vaccine 

Development

 Systems vaccinology represents an entirely different approach 
which is already showing promise for establishing as yet unknown 
COPs for several diseases.121-124 Developments in transcriptomics, 
proteomics, and bioinformatics have made it possible to perform 
genome-wide and global analysis of host responses after infec-
tion and vaccination, allowing for discovery of new and relevant 
correlates or surrogates of protection. Systems vaccinology aims 
to identify both innate and adaptive immune signatures able 
to predict the immunogenicity and protective capacity of vac-
cines, as well as identification of potentially novel mechanisms of 
immune regulation. For instance, the outcome of LAIV or IIV 
vaccination in man with respect to the humoral response could 
be predicted based on the expression of a defined set of genes only 
3 d after vaccination.121 Such systems biology approaches could 
be useful, not only to shorten clinical testing but also to assess 
the quality of animal models and identify animal vs. human 
correlates. A substantial portion of the recently obtained knowl-
edge from systems vaccinology is based on influenza work. We 

therefore claim that the rapidly moving influenza field strongly 
contributes to improved understanding of novel biomarkers for 
protection that may be generally applied to accelerate vaccine 
development processes.

Animal Models and Bridging to Human COPs

The successful use of animal models for human vaccine devel-
opment largely lies in the ability to extrapolate virus and vac-
cine induced immune response, virus behavior and virus induced 
clinical disease and pathology from animals to humans. A num-
ber of small animal models exist for preclinical evaluation of 
influenza vaccines of which the 2 mostly used model systems are 
mice and ferrets.125

To be able to measure COPs, the availability of a relevant 
challenge model remains crucial. To this end, observations and 
analyses made in infected humans and clinical challenge trials83 
should guide the choice of animal model and outline the param-
eters to be monitored and measured in a preclinical study. For 
influenza infection, these parameters include influenza like ill-
ness, pathology, mortality, virus susceptibility, replication kinet-
ics and organ distribution, as well as virus transmission. Despite 
the widespread use of mice, the clinical disease and pathology 
seen in the mouse influenza model do not correlate well with 
observations in humans.125-127 Moreover, mice are not susceptible 
to most human seasonal strains, which require adaptation, and 
the outcome of challenge studies performed in mice should there-
fore be treated with caution. On the other hand, ferrets develop 
fever, nasal discharge, suffer from weight loss and develop lung 
pathology and thus more closely resemble infection in humans. 
Ferrets also exhibit the same subtype-dependent severity of dis-
ease which can vary from a common cold to a deadly disease.125-128 
Moreover, ferrets are susceptible to human and avian influenza 

Figure 2. Connectograms showing both type and strength of a spectrum of immune responses induced by principally different influenza vaccine 
concepts: (A) Classical split or subunit vaccines mostly inducing vaccine specific HA and NA antibodies, (B) Vaccines specifically targeting a more broad 
antibody response with potential for cross-protection, (C) Vaccines specifically targeting conserved antigens for cross-reactive T cell responses, and (D) 
LAIV covering a broad range of both humoral and cellular immune responses.
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strains, largely show the same tissue distribution of infection, 
and are able to spread the virus through aerosol transmission. 
This means the ferret is a suitable model to study the effect of 
vaccines on influenza virus transmission which is particularly 
important for universal vaccines that most likely will not pro-
vide neutralizing protection. Additional factors that should be 
considered when setting up a challenge model are the route of 
infection129 and the infectious dose.130 Intranasal administra-
tion of H5N1 influenza results in a severe CNS disease and 
intratracheal administration in severe pneumonia129 of which 
only the latter has been described in humans.131,132

The immune system that most closely resembles humans 
is that of non-human primates. Although this model is used 
for some influenza studies it is not the model of widespread 
choice, due to ethical and economic reasons.125,128 Preclinical 
research is therefore based on models that to a lesser extent rep-
resent the human immune system, but still may be good pre-
dictors. Antibody responses can be measured equally well in 
mice and ferrets by means of ELISA (IgG and IgA), HI, NI, 
and virus neutralization. The mouse model, however, offers 
greater opportunities for measuring cellular immune responses. 
The availability of inbred, knockout and transgenic mouse 
strains and the feasibility of adoptive transfer and T-cell deple-
tion experiments greatly enhance the investigation of COPs. 
Such experiments have demonstrated a role for CD8+ T cells 
in viral clearance and contributed to establishment of immune 
correlates in mice. Furthermore, single epitope vaccination and 
flow cytometric analysis of epitope specific INF-γ producing 
CD8+ T cells has even revealed the contribution of a single 
T-cell clone to virus control.98 In addition, the availability of 
HLA-transgenic mice increases the relevance of this research 
for humans.133,134 These types of experiments are not feasible in 
ferrets since they are outbred animals, the nature of their MHC 
is unknown, and cellular reagents are scarce. Nevertheless, 
some cellular reagents, developed for other species, do show 
cross-reactivity with some of the CD markers and cytokines in 
ferrets, which allows the detection of CD3, CD8, and INF-
γ.135,136 In addition, INF-γ ELISPOT assays have been devel-
oped but are not yet commercially available.137 Moreover, innate 
cytokine responses have been measured at the mRNA level by 
RT-PCR.138

Owing to their wide availability, the range of immunological 
reagents available, easy handling and cost benefits, inbred mice 
models are typically used as the first model of choice for proof 
of concept, dose ranging studies, and understanding of COPs. 
Subsequently, the ferret model is exploited to further investigate 
the protective effectiveness of a vaccine. Recent developments 
allowing basic analysis of cellular immune responses in ferrets 
should ultimately reveal whether these responses correlate with 
those in humans. If so, this could also shed light on the extent 
to which murine COPs can be translated to clinical correlates. 
Although care should be taken,99 utilization of biomarkers for 
vaccine effectiveness in ferrets for development of human COP 
assays is regarded as an obligatory and strategic step in influ-
enza vaccine development.

Concluding Remarks

For a range of diseases, markers of an appropriate humoral 
immune response have so far been the most frequently used and 
best validated correlates of protective immunity after vaccination. 
However, technological and conceptual advancements within the 
field of cell-mediated immunity have led to a number of new 
immunological read-outs with the potential to emerge as valuable 
correlates of vaccine-induced protection. Whereas antigen-spe-
cific production of the Th1 cytokine IFN-γ has been considered 
as a quantitative marker of protective immunity, recent evidence 
from several infectious disease models has pointed to multifunc-
tional CD4+ T cells as an even better correlate of sustained pro-
tective immunity.139 In addition, new technological possibilities 
to measure antigen-specific cytotoxic CD8+ T cell responses and 
cytokine patterns after infection or vaccination, has opened a 
new vista to include defined T-cell mediated effector functions 
in the evaluation of protective immune responses. In this context, 
the influenza field plays an important role as a trendsetter for a 
range of other viral and even bacterial diseases by guiding the 
development of similar COPs needed for fast design and develop-
ment of new vaccines against emerging infections.

While HI assays still represent the most important COPs for 
evaluation and licensing of traditional influenza vaccines, new 
vaccine concepts targeting other antigens, delivery systems, and 
protective mechanisms have paved the way for several new and 
emerging COPs with relevance for both antibody and T-cell 
mediated immunity (Fig. 2). Specifically, the possibility to utilize 
conserved T-cell antigens (NP, M2, PA, and PB) and conserved 
HA and NA domains in universal vaccination against seasonal 
and pandemic influenza, highlights the need for introducing 
COPs that are relevant to these immune responses. Although the 
relative importance of the novel COPs reviewed here is difficult 
to rank, we now have a spectrum of relevant assays available with 
probably different strength for being used as a predictor of pro-
tection in different settings. Hence, the application and practical 
value of each COP assay may depend on the type of vaccine to 
be used as well as the immune responses and age groups targeted. 
Although several new and potential important COPs for influ-
enza have been introduced and successfully applied in vaccine 
development, there is still a need for validation and standard-
ization of such assays, including definition of protective levels, 
to secure their optimal use and interpretations in comparative 
analysis. This will also be a prerequisite before these assays can be 
adopted by regulatory authorities for approval purposes.

Importantly, research on influenza vaccines and COPs has 
not only paved the way for improved understanding of protec-
tive immune responses against influenza infection and disease, 
but also of which upcoming and principally different vaccine 
platforms that can induce the appropriate immune responses. 
Finally, results from the influenza field have taught us how to 
measure the corresponding and relevant laboratory-based COPs 
at the methodological level. All these aspects represent important 
contributions to the knowledge-based platform we need for rap-
idly developing efficient vaccines against emerging infections. By 



©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com	 Human Vaccines & Immunotherapeutics	 1945

systematically extracting and processing the same knowledge ele-
ments from a spectrum of viral and bacterial infections, it should 
be possible to establish general predictive rules for optimal and 
fast vaccine design based on COPs.
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