80 research outputs found

    A transfer-learning approach to feature extraction from cancer transcriptomes with deep autoencoders

    Get PDF
    Publicado en Lecture Notes in Computer Science.The diagnosis and prognosis of cancer are among the more challenging tasks that oncology medicine deals with. With the main aim of fitting the more appropriate treatments, current personalized medicine focuses on using data from heterogeneous sources to estimate the evolu- tion of a given disease for the particular case of a certain patient. In recent years, next-generation sequencing data have boosted cancer prediction by supplying gene-expression information that has allowed diverse machine learning algorithms to supply valuable solutions to the problem of cancer subtype classification, which has surely contributed to better estimation of patient’s response to diverse treatments. However, the efficacy of these models is seriously affected by the existing imbalance between the high dimensionality of the gene expression feature sets and the number of sam- ples available for a particular cancer type. To counteract what is known as the curse of dimensionality, feature selection and extraction methods have been traditionally applied to reduce the number of input variables present in gene expression datasets. Although these techniques work by scaling down the input feature space, the prediction performance of tradi- tional machine learning pipelines using these feature reduction strategies remains moderate. In this work, we propose the use of the Pan-Cancer dataset to pre-train deep autoencoder architectures on a subset com- posed of thousands of gene expression samples of very diverse tumor types. The resulting architectures are subsequently fine-tuned on a col- lection of specific breast cancer samples. This transfer-learning approach aims at combining supervised and unsupervised deep learning models with traditional machine learning classification algorithms to tackle the problem of breast tumor intrinsic-subtype classification.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Artificial Intelligence-based methods in head and neck cancer diagnosis : an overview

    Get PDF
    Background This paper reviews recent literature employing Artificial Intelligence/Machine Learning (AI/ML) methods for diagnostic evaluation of head and neck cancers (HNC) using automated image analysis. Methods Electronic database searches using MEDLINE via OVID, EMBASE and Google Scholar were conducted to retrieve articles using AI/ML for diagnostic evaluation of HNC (2009–2020). No restrictions were placed on the AI/ML method or imaging modality used. Results In total, 32 articles were identified. HNC sites included oral cavity (n = 16), nasopharynx (n = 3), oropharynx (n = 3), larynx (n = 2), salivary glands (n = 2), sinonasal (n = 1) and in five studies multiple sites were studied. Imaging modalities included histological (n = 9), radiological (n = 8), hyperspectral (n = 6), endoscopic/clinical (n = 5), infrared thermal (n = 1) and optical (n = 1). Clinicopathologic/genomic data were used in two studies. Traditional ML methods were employed in 22 studies (69%), deep learning (DL) in eight studies (25%) and a combination of these methods in two studies (6%). Conclusions There is an increasing volume of studies exploring the role of AI/ML to aid HNC detection using a range of imaging modalities. These methods can achieve high degrees of accuracy that can exceed the abilities of human judgement in making data predictions. Large-scale multi-centric prospective studies are required to aid deployment into clinical practice

    Machine learning applications in cancer prognosis and prediction

    No full text
    Cancer has been characterized as a heterogeneous disease consisting of many different subtypes. The early diagnosis and prognosis of a cancer type have become a necessity in cancer research, as it can facilitate the subsequent clinical management of patients. The importance of classifying cancer patients into high or low risk groups has led many research teams, from the biomedical and the bioinformatics field, to study the application of machine learning (ML) methods. Therefore, these techniques have been utilized as an aim to model the progression and treatment of cancerous conditions. In addition, the ability of ML tools to detect key features from complex datasets reveals their importance. A variety of these techniques, including Artificial Neural Networks (ANNs), Bayesian Networks (BNs), Support Vector Machines (SVMs) and Decision Trees (DTs) have been widely applied in cancer research for the development of predictive models, resulting in effective and accurate decision making. Even though it is evident that the use of ML methods can improve our understanding of cancer progression, an appropriate level of validation is needed in order for these methods to be considered in the everyday clinical practice. In this work, we present a review of recent ML approaches employed in the modeling of cancer progression. The predictive models discussed here are based on various supervised ML techniques as well as on different input features and data samples. Given the growing trend on the application of ML methods in cancer research, we present here the most recent publications that employ these techniques as an aim to model cancer risk or patient outcomes. © 2014 Kourou et al

    Provenance of archaeological limestone with EPR spectroscopy: The case of the Cypriote-type statuettes

    No full text
    The present work demonstrates the potential of EPR spectroscopy as a useful technique in provenance investigation of archaeological finds of limestone. The case of the small, Cypriote-type limestone statuettes found in most major Archaic sanctuaries of the Eastern Mediterranean is used as an illustrative application. Ancient and modern limestone quarries of Cyprus, Samos, Rhodes and Egypt were sampled in order to form a reference data bank for the likely places of origin. Samples were also taken from statuettes exhibited in the archaeological museums of Nicosia (2 samples), Samos (14 samples) and Copenhagen (National Archaeological Museum, 19 samples). All quarry and archaeological samples were analysed with EPR spectroscopy. The quarry samples from Rhodes were easily distinguished from the other quarry samples and were not treated further because they produce material of low quality and compactness. A detailed study of the EPR spectroscopy results leads to the determination of a number of parameters, which separate the reference group of Samos from those of Cyprus and Egypt. The structure of the EPR spectra in the region around g=2.0000 is characteristic for these different quarrying areas. Diagrams where each quarry area is represented by a field were drawn and the archaeological samples were plotted on them. All the analysed statuettes (except for one, which is most probably of Samian limestone) appear to be carved in Cypriote limestone. Consequently, the results of this research offer a decisive argument in favour of the Cypriote origin for statuettes of this type found in the Aegean. © 2004 Elsevier Ltd. All rights reserved

    Sequence patterns mediating functions of disordered proteins

    No full text
    Disordered proteins lack specific 3D structure in their native state and have been implicated with numerous cellular functions as well as with the induction of severe diseases, e.g., cardiovascular and neurodegenerative diseases as well as diabetes. Due to their conformational flexibility they are often found to interact with a multitude of protein molecules; this one-to-many interaction which is vital for their versatile functioning involves short consensus protein sequences, which are normally detected using slow and cumbersome experimental procedures. In this work we exploit information from disorder-oriented protein interaction networks focused specifically on humans, in order to assemble, by means of overrepresentation, a set of sequence patterns that mediate the functioning of disordered proteins; hence, we are able to identify how a single protein achieves such functional promiscuity. Next, we study the sequential characteristics of the extracted patterns, which exhibit a striking preference towards a very limited subset of amino acids; specifically, residues leucine, glutamic acid, and serine are particularly frequent among the extracted patterns, and we also observe a nontrivial propensity towards alanine and glycine. Furthermore, based on the extracted patterns we set off to infer potential functional implications in order to verify our findings and potentially further extrapolate our knowledge regarding the functioning of disordered proteins. We observe that the extracted patterns are primarily involved with regulation, binding and posttranslational modifications, which constitute the most prominent functions of disordered proteins. © Springer International Publishing Switzerland 2015

    Optimizing the Efficiency of Machine Learning Techniques

    Get PDF
    © 2020, Springer Nature Singapore Pte Ltd. The prediction of judicial decisions based on historical datasets in the legal domain is a challenging task. To answer the question about how the court will render a decision in a particular case has remained an important issue. Prior studies conducted on the prediction of judicial case decisions have datasets with limited size by experimenting less efficient set of predictors variables applied to different machine learning classifiers. In this work, we investigate and apply more efficient sets of predictors variables with a machine learning classifier over a large size legal dataset for court judgment prediction. Experimental results are encouraging and depict that incorporation of feature selection technique has significantly improved the performance of predictive classifier
    corecore