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 Introduction

With the rise of A.I., expert-systems, machine-learning technology and big data 
analytics, we may start to wonder whether humans as creative, critical, cognitive 
and intellectual beings will become redundant for the generation and application of 
knowledge. And additionally, will the increasing success of machine-learning tech-
nology in finding patterns in data make scientific knowledge in the form of theories, 
models, laws, concepts, (descriptions of) mechanism and (descriptions of) phenom-
ena superfluous?1 Or can it be argued that human scientists and human-made scien-
tific theories etc. remain relevant, even if machines were able to find data-models 
that adequately but incomprehensibly relate or structure data—for example, data- 
models that provide empirically adequate mapping relationships between data-input 
and data-output or determine statistically sound structures in data-sets.2

1 In this chapter, ‘theory’ is taken in a broad sense, encompassing different kinds of scientific 
knowledge such as concepts, laws, models, etc. The more general term ‘scientific knowledge’ 
encompasses different kinds of specific epistemic entities such as theories, models, laws, concepts, 
(descriptions of) phenomena and mechanisms, etc., each of which can be used in performing dif-
ferent kinds of epistemic tasks (e.g., prediction, explanation, calculation, hypothesizing, etc.).
2 On the terminology used in this chapter. In the semantic view of theories, patterns in data are also 
called data-models (see section “Empiricist epistemologies”), which are mathematical representa-
tions of empirical data sets (e.g., Suppe 1974; McAllister 2007). This chapter will adopt the term 
data-model in this very sense. In machine learning textbooks, data-models are also referred to as 
mathematical functions. Abu-Mostafa et  al. (2012), for instance, speaks of the unknown target 
function f: X −> Y, where X is the input space (set of all possible inputs x), and Y is the output 
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Anderson (2008) indeed claims that the traditional scientific method as well as 
human-made scientific theories will become obsolete:

This is a world where massive amounts of data and applied mathematics replace every 
other tool that might be brought to bear. Out with every theory of human behavior, from 
linguistics to sociology. Forget taxonomy, ontology, and psychology. Who knows why 
people do what they do? The point is they do it, and we can track and measure it with 
unprecedented fidelity. With enough data, the numbers speak for themselves. […]. The big 
target here isn’t advertising, though. It’s science. The scientific method is built around test-
able hypotheses. These models, for the most part, are systems visualized in the minds of 
scientists. The models are then tested, and experiments confirm or falsify theoretical models 
of how the world works. This is the way science has worked for hundreds of years. […]. 
Scientists are trained to recognize that correlation is not causation, that no conclusions 
should be drawn simply on the basis of correlation between X and Y (it could just be a 
coincidence). Instead, you must understand the underlying mechanisms that connect the 
two. Once you have a model, you can connect the data sets with confidence. Data without 
a model is just noise. […]. But faced with massive data, this approach to science — hypoth-
esize, model, test — is becoming obsolete. (Anderson 2008, my emphasizes).

Essentially, Anderson suggests that the meticulous work done by scientific 
researchers aiming at scientific concepts, laws, models, and theories on the basis of 
empirical data, will become superfluous because learning machines are able to gen-
erate data-models that represent relationships and structures in the data. Each set of 
data will be fitted by a unique data-model, which implies that we can give up on 
generalization and unification endeavors. Intermediate scientific concepts, laws, 
models, and theories, which are desired by humans for obvious metaphysical 
beliefs, and which are also practically needed to deal with the limitations of their 
intellect, can be bypassed if relating, structuring and simplifying data—which basi-
cally is what science does according to Anderson’s quote—can be done by machines.

If let’s say, scientists such as Boyle, Gay-Lussac, and Hooke, had fed their exper-
imental data to a machine (e.g., data consisting of the measured pressure, volume 

space (e.g., y1 is ‘yes’ for x1; y2 is ‘no’ for x2; etc.). The machine learning algorithm aims to find a 
mathematical function g that ‘best’ fits the data, and that supposedly approximates the unknown 
target function f. Abu-Mostafa et al. call the function g generated by machine learning ‘the final 
hypothesis.’ Alpaydin’s (2010), on the other hand, uses the notion of model and function inter-
changeably. An example (Alpaydin 2010, 9) is predicting the price of a car based on historical data 
(e.g., past transaction). Let X denote the car attributes (i.e., properties considered relevant to the 
price of a car) and Y be the price of the car (i.e., the outcome of a transaction). Surveying the past 
transactions, we can collect a training data set and the machine learning program fits a function to 
this data to learn Y as a function of X. An example is when the fitted function is of the form y = w1.x 
+ w0. In this example, the data-model is a linear equation and w1 and w0 are the parameters (weight 
factors) of which the values are determined by the machine learning algorithm to best fit the train-
ing data. Alpaydin (2010, 35) calls this equation ‘a single input linear model.’ Hence, in this 
example, the machine learning algorithm to fit the training data includes only one property to 
predict the price of a car. Notably, the machine learning program involves a learning algorithm, 
chosen by human programmers, that confines the space in which a data-model can be found – in 
this example, the learning algorithm assumes the linear equation, while the data-model consists of 
the linear equation together with the fitted values of the parameters (w0 and w1).
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and temperature in a closed vessel, or the weights and extensions of different 
springs, respectively), the machine would have generated a data-model to connect 
these data, which could then be used to make predictions at new physical condi-
tions. The Boyle/Charles/Gay-Lussac laws for gasses and Hooke’s law for elasticity 
would not have existed. Taking this a step further, Anderson’s claim implies that 
scientific concepts such as ‘the ideal gas law’, ‘the gas-constant’ (R), and ‘the elas-
ticity coefficient’ (k) would be unnecessary. We would not even need related scien-
tific concepts, such as ‘gas-molecules,’ ‘the number of Avogadro,’ ‘collisions of 
molecules,’ and ‘reversible processes.’3

This short expose aims to raise the question whether a future is conceivable in 
which nobody needs to understand science any longer—a future in which the pro-
duction and uses of scientific concepts, laws, models, mechanisms, theories etc. can 
be replaced by machine learning algorithms that produce epistemically opaque 
data-models4 and networks stored in machines that will do all kinds of epistemic 
tasks for us—which would imply indeed that humans no longer need to learn theo-
ries etc. nor how to apply scientific knowledge in solving problems. Conversely, are 
there reasons to believe that scientific researchers still have a role to play?

The structure of this article is as follows. Section “Machine-learning” presents a 
brief overview of machine-learning technologies and applications. The different 
kinds of ways in which computers and machine-learning technologies may replace 
human experts and scientists are discussed. A list of epistemic tasks is drawn up, 
about which it can be reasonably assumed that machine learning will outperform 
humans.

In section “Empiricist epistemologies”, I aim to make plausible that the abilities 
of computers and machine-learning technologies largely correspond with ideas in 
the empiricist tradition about the character of knowledge and ways of (deductive or 
inductive) reasoning on the basis of knowledge—and vice versa, about how general 
knowledge can be derived (inductively and statistically) from observations and data.

I will revisit accounts of empiricism at the beginnings of the philosophy of sci-
ence, including (neo)positivism, because authors such as Mach and Duhem have 
articulated the basic assumptions of empiricism in a clear and straightforward man-
ner. My aim is to first explain why epistemological and normative accounts of 

3 Current machine learning practices show that machine learning algorithms are dependent in vary-
ing degrees on our theoretical and practical background knowledge. Therefore, another option 
regarding Anderson’s assumptions is that the current state of knowledge suffices for this purpose. 
Yet, in the context of this article, it will be assumed that he means to say that machine learning 
technology will eventually develop to the extent that such knowledge will become superfluous in 
the construction of machine learning algorithms.
4 The notion of epistemic opaqueness of a process has been introduced by Humphreys (2009, 618): 
“a process is epistemically opaque relative to a cognitive agent X at time t just in case X does not 
know at t all of the epistemically relevant elements of the process. A process is essentially epis-
temically opaque to X if and only if it is impossible, given the nature of X, for X to know all of the 
epistemically relevant elements of the process.”
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 science developed in the (neo-)positivist and empiricist tradition, make it very hard 
to articulate our intuitive discomfort about the suggestion that machines could take 
over and make human scientists virtually superfluous. I aim to make plausible that 
on an empiricist epistemology the elimination of any human contribution to scien-
tific knowledge is in fact already built in as a normative ideal. Attempts to ensure the 
superiority of science seem to assume that the objectivity of epistemic results and of 
methods testing these results consists of some kind of algorithmic reasoning, be it 
deductive or (statistical) inductive. If this is so, it should not come as a surprise that 
we are forced to believe that data-models produced by machine learning algorithms 
are just better.

Three well-known ideas developed in the empiricist tradition will be discussed to 
show that a strict empiricist epistemologies indeed support the claim that objective, 
although opaque, data-models produced in machine learning processes can replace 
and may even be preferable to human-made scientific knowledge: (1) Hempel’s 
model of scientific explanation, which supports the idea that the supposed laws and 
correlations operating in D-N and I-S explanation schema’s can be interpreted as 
data-models constructed to represent input-output relationships in larger sets of 
observed or measured data; (2) The rejection of a distinction between data and phe-
nomena, which supports the idea that (descriptions of) phenomena can be reduced 
to statistically sound data-models generated in machine learning processes; and (3) 
The semantic view of theories, which supports the idea that scientific knowledge in 
the form of theories or models does not add much to empirically adequate and/or 
statistically sound data-models to represent data.

Hence, several ideas central to empiricist epistemologies supports the belief that 
ultimately scientific knowledge is no longer needed, and show that the empiricist 
tradition offers hardly any possibilities for a more positive appreciation of the epis-
temic and cognitive roles of human scientists.

In the last section (section “Knowledge in the age of machine-learning technolo-
gies”), it will be argued that empiricist epistemologies are flawed, or at least too 
limited to understand the crucial role of scientific knowledge (theories, models, etc.) 
and human scientist in epistemic practices such as the engineering and biomedical 
sciences. It will be argued that a better understanding of knowledge in the age of 
machine-learning technologies requires widening our philosophical scope in order 
to include epistemological issues of using knowledge for all kinds of practical pur-
poses. To that aim, philosophical accounts of science must start from the side of 
epistemic tasks and uses (e.g., Boon 2017c) and address questions such as, how 
science produces knowledge that can be used, and how is it possible that knowledge 
can be used anyway—for instance, in discoveries, technological innovations, ‘real- 
world’ problem-solving, and in creating and controlling functionally relevant phe-
nomena by means of technology (e.g., Boon 2017a). Finally, on the basis of this 
analysis, many roles of scientists and of comprehensive scientific knowledge can be 
pointed out, which is how the human is brought back in science.
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 Machine-Learning

 Machine-Learning Technologies

Machine-learning algorithms are increasingly used in dealing with complex phe-
nomena or systems, aiming to detect, predict or intervene with the complex physical 
phenomena or systems in developing technological application such as in biomedi-
cal and healthcare contexts. Examples are machine-learning applications in the pre-
diction and prognosis of chronic diseases (Kourou et al. 2015; Dai et al. 2015); drug 
discovery (Lima et al. 2016); brain imaging (Lemm et al. 2011); and genetics and 
genomics (Libbrecht and Noble 2015).

Other well-known machine-learning applications aim at automated pattern rec-
ognition in ways that replace human experts. For instance, recognizing visual 
images, which require the eye of an expert but not in-depth theoretical knowledge. 
Examples are automatic face recognition (Odone et  al. 2009; Olszewska 2016); 
automated visual classification of cancer (Esteva et al. 2017); vision technologies 
for biological classification (Tcheng et  al. 2016); and, forensics (Mena 2011). 
Another application of machine-learning concerns pattern-recognition in the sense 
of discovering patterns, correlations and causal relationships in (big) data sets, 
especially in the social sciences. Originally, these kinds of data-sets were analyzed 
by means statistical programs such as SPSS. Examples of machine-learning tech-
nologies drawing on finding patterns and structures in order to make proper predic-
tions about specific cases situations, are: financial risk management (van Liebergen 
2017); fraud detection (Phua et al. 2010); and manufacturing (Wuest et al. 2016). In 
these kinds of applications, machine-learning technologies develop towards more 
advanced strategies of finding patterns in data, e.g., by coupling data from different 
sources, and strategies such as network-based stratification to detect correlations or 
even causal structures (e.g., Hofree et al. 2013) that would be impossible through 
more traditional statistical programs.

Notably, machine learning is different from computer simulations, which utilize 
scientific knowledge to build mathematical models (e.g., sets of differential equa-
tions) that can be run on a computer—scientists use these simulation models, for 
instance to view dynamic processes and to investigate how changes in parameter 
values affects these processes. The machine-learning process does not draw on sci-
entific models that are constructed by means of theories, laws, mechanisms and so 
forth. No theory or mechanism or law needs to be fed to the machine-learning pro-
cess. Instead, the learning problem of the machine is to find a data-model that pres-
ents a correct mapping relationship between input and output data of a training-set 
(Alpaydin 2010; Abu-Mostafa et al. 2012). For example, in ML systems concerning 
face recognition, the relevant task is classification in which the inputs, which are the 
images of human faces, are classified into the individuals to be recognized, which 
are the outputs.

How Scientists Are Brought Back into Science—The Error of Empiricism



48

 What Machines Can Do

Given the currently known examples, computers and machine-learning technolo-
gies can do different types of things for different uses, thereby taking over intellec-
tual capabilities and types of reasoning that were previously carried out by experts 
and scientific researchers. Here, I propose a provisional categorization of epistemic 
tasks that can be performed by both humans and machine learning technologies, 
with the aim of making clearer how capacities of computers relate to those of 
humans:

 (a) ‘Match’: Machine-learning technologies have the ability to learn to ‘match’ a 
visual images or data-strings (the input data) with a specific image or data- 
string somewhere sitting in a large data-set (e.g., automated face-recognition, 
finger-print recognition, matching of DNA profiles). Accordingly, ML technol-
ogy is able to somehow mimic the human ability to recognize relevant similari-
ties between visual images, or structural similarities in graphical pictures. It is 
often still possible to check (e.g., by and expert) whether the technology per-
forms at least as good as the expert, but the ML-technology will outperform 
humans in speed. If images or data-strings get more complex, machines may 
perform more reliable or at a higher statistical precision (i.e., pointing out how 
reliable the outcome is).

 (b) ‘Interpret’: Machine-learning technologies have the ability to learn to ‘inter-
pret’ visual images as belonging to a specific type, in accordance with catego-
ries defined by humans. Accordingly, ML technology is able to take over the 
human ability to recognize or interpret the image as of a specific type of object, 
to belong to a specific category, or to subsume it under a specific concept (e.g., 
“that is an oak,” “that is a car of brand Z,” “that is Picea mariana rather than 
Picea glauca”). In these applications experts may have played a role in super-
vising the machine-learning process (e.g. Tcheng et al. 2016). Here as well, it is 
often still possible to check (by an expert) whether the technology performs at 
least as good as the expert, but the ML-technology will outperform humans in 
speed.

 (c) ‘Diagnose’: Similarly, machine-learning technologies have the ability to learn 
to ‘diagnose’ data-strings as probably belonging to a specific class within pre- 
set categories, which may be generated by humans, but also by means of 
machines. Hence, ML technology is able to infer from limited information 
about a specific target that “it probably belongs to a specific category and there-
fore will probably also have several additional properties” (e.g., as in personal-
ized advertisement of buyers; financial risk assessment of customers; and, in 
medical diagnosis of patients).

 (d) ‘Structure’: Machine-learning technologies have the ability to learn to find pat-
terns, correlations and causal relations in data, which is a task originally done 
by humans or by statistical programs. When data-sets get more complex (which 
can also be considered as ‘richer’), the relationships will become more complex 
(which can also be considered as ‘more refined’), which may then be accepted 
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as empirically adequate but opaque structures in data. These structures, in turn, 
can be utilized in machines learning to ‘match,’ ‘interpret,’ or ‘diagnose.’

 (e) ‘Discover’: Additionally, structures found in data by ML technologies may 
point out, or point at (physical or social) phenomena, very similar to how human 
researchers infer from observed occurrences, causal relationships or measured 
regularities to (physical or social) phenomena. Yet, it will require human 
researchers to draw the relationship between computer outcomes and the real 
world, because the pattern does not speak for itself.

 (f) ‘Calculate’: Machine-learning technologies are enabled by computers (the 
machine). Automated calculation was the first example of computers outper-
forming humans in accuracy and speed. Humans can check the calculations, 
and assume that the algorithm by which the computer performs the calculation 
somehow maps the algorithm as we understand it (e.g., adding up instead of 
multiplying).

 (g) ‘Simulate’: Similarly, computer programs running complex simulations of 
dynamic processes outperform humans in accuracy and speed, as well as in 
handling complexity. Here, as has been briefly explained above, the adequacy 
of the computer program is firstly checked by how the scientific model (on the 
basis of which the computer-program was build) was constructed.

 (h) ‘Integrate’: The performance of machine-learning technology will multiply if 
the mentioned abilities are combined. Natural language translation is an exam-
ple, but also biomedical applications, for instance, as expressed in expectations 
regarding personalized and precision medicine.

This overview shows that, while computers already performed better than 
humans with regard to deductive reasoning in calculation and simulation—which 
basically consists of performing repetitive tasks guided by logical rules— they now 
also start to get better than humans in recognizing patterns and structure in data or 
pictures, for matching, interpreting and diagnosing purposes. Additionally, machine 
learning technology may contribute to the discovery of new theoretical concepts or 
categories, but in this case, the crucial role of humans is still to recognize the dis-
covered structure (pattern, correlation or causal relationship) as a representation of 
something that is traceable or existent in reality, i.e., as a (physical or social) 
phenomenon.

One of the major applications of ML technology is their uses in making correct 
predictions. Computers were already widely used in their ability of deductive infer-
ence, thereby making deductively correct predictions—i.e., the prediction is logi-
cally correct, but may be empirically inadequate due to errors in the underlying 
models or the computational procedures. Machine-learning technology adds predic-
tions that are based on inductive inference, which means that the algorithms (i.e., 
the correct mapping relationship in a learning set) is applied in new situations to 
predict statistically expected outcomes.

This vast range of machine-learning applications may suggest that scientific 
researchers and scientific knowledge become superfluous as learning from large 
data-sets, algorithms and data-models will be developed at a degree of complexity 
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and adequacy far beyond the capacity of the human intellect. Yet, in section 
“Knowledge in the age of machine-learning technologies”, it will be argued that 
scientists and scientific researchers still play a crucial role.

 Empiricist Epistemologies

 Basic Assumptions of Empiricism

The first claim of this paper is that, if we accept some of the fundamental presup-
positions of empiricism, it becomes very difficult to argue against the idea that 
machines will ultimately perform better than human scientists. Presuppositions cen-
tral to empiricist strands can be divided into two kinds, one normative and one 
epistemological. The normative ideal is driven by the desire to prevent superstition 
and abuse of power through knowledge, by requiring knowledge to be verifiable in 
principle, and is one of the reasons why objectivity plays a central role in science. 
Linked to this is also the explicit aim of avoiding metaphysical claims in science. 
This then requires an epistemology that explains how objectivity can be achieved 
while avoiding metaphysical content. Yet, empiricist epistemologies are not neces-
sarily normatively motivated, but can also be determined by purely epistemological 
convictions. In order to substantiate my first claim, I will first outline the basic 
assumptions of empiricism by reference to Mach’s Positivism and Logical 
positivism.

Central to Mach’s positivism is the idea that the subject matter of scientific theo-
ries is phenomenal regularities.5 Theories characterize these regularities in terms of 
theoretical terms, which need to be grounded in observation. Accordingly, theoreti-
cal terms in our theories and laws have to be explicitly defined in terms of phenom-
ena, and are nothing other than abbreviations for such phenomenal descriptions. 
Additionally, Mach maintained that one must reject any a priori (or metaphysical) 
elements (such as causality) in the constitution of knowledge of things.

Logical positivism agreed that the subject matter of scientific theories is phe-
nomenal regularities and that theories characterize these regularities in terms of 
theoretical terms being conventions used to refer to phenomena, and indeed added 
to positivism that a scientific theory is to be axiomatized in mathematical logic that 
specifies the relationships holding between theoretical terms.

The preliminary point I aim to make based on this brief overview, is that if these 
basic assumptions of a strict empiricism were correct, the theoretical terms (also 
called scientific concepts), mathematical relationships between them (also called 
scientific laws) and theories (also called axiomatic systems) generated in science by 
the meticulous efforts of scientists, are in fact quite arbitrary intellectual instru-
ments to fit the data, which, in principle, can be replaced by the data-models 

5 Frederick Suppe (1974, Chapter One) presents a comprehensive outline on the historical back-
ground to the so-called Received View, which develops from positivism to logical positivism (e.g., 
Carnap) and logical empiricism (e.g., Hempel).
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 generated and executed in machine-learning technologies. Additionally, since 
machines can handle much bigger data-sets, and because machines are not confined 
by the kinds of idealizations and simplifications humans need to make in order to fit 
data into comprehensive mathematical formalisms, we may expect that machines 
will handle the inherent irregularity and complexity of data-sets more effectively 
than the human intellect ever could.

 Scientific Explanation

Also Duhem’s philosophy of science stands in the tradition of positivism and con-
ventionalism of the late 19th and early 20th century. In accordance with the basic 
assumption of this tradition, Duhem denies that theories of physics present (causal) 
explanations. Instead, an explanation is a system of mathematical propositions, 
deduced from a small number of principles, which aim to represent as simply, as 
completely, and as accurately as possible a set of experimental laws. Experimental 
laws on this view, are simplified or idealized general descriptions of experimentally 
produced observable effects. Concerning the very nature of things, or the realities 
hidden under the phenomena described by experimental laws, a theory tells us abso-
lutely nothing. On the contrary, from a purely logical point of view, there will always 
be a multiplicity of different physical theories equally capable of representing a 
given set of experimental laws (Duhem [1914] 1954; Craig 1998).6

Hempel’s (1962, 1966) two models of explanation agree to the basic assump-
tions of empiricism as well. Although Hempel emphasizes that one of the primary 
objectives of the natural sciences is to explain the phenomena of the physical world, 
he defends that formal accounts of explanation should avoid the metaphysical 
notion of causality. Similar to Duhem, Hempel claims that: the explanation fits the 
phenomenon to be explained into a pattern of uniformities and shows that its occur-
rence was to be expected, given the specified laws and the pertinent particular cir-
cumstances. Explanations, therefore, may be conceived as deductive arguments 
whose conclusion is the explanandum sentence, E, and whose premise-set, the 
explanans, consists of general laws, L1, L2, ..., Lr, and of other statements C1, C2, ..., 
Ck, which make assertions about particular facts. Hempel calls explanatory accounts 
of this kind, explanations by deductive subsumption under general laws, or 
deductive- nomological (DN) explanations. The second model involves explanation 
of phenomena by reference to general laws that have a probabilistic-statistical form. 
In this case, the explanans does not logically imply the explanation, but involves 
inductive subsumption under statistical laws, called inductive-statistical (IS) expla-
nation. In this case, the statistical laws make it only likely that the phenomenon was 
to be expected.

6 A clarifying phrase “to save the phenomena” to capture the empiricist idea of how knowledge is 
obtained from data was originally introduced by Duhem (2015/1909) and later adopted by, among 
others, Van Fraassen (1977, 1980) and Bogen and Woodward (1988).
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Similar to Duhem, Hempel’s notion of explanation entails that an explanation 
only tells that, based on our empirical knowledge of the world so far, the phenom-
enon was to be expected—the phenomenon ‘fits to’, or ‘can be subsumed under,’ the 
regularities, patterns and correlations that have been found in observations and 
experimentally produced data.

Again, if, as empiricist epistemologies suggest, this is what science ultimately 
has to offer—that indeed, theories, models, laws and scientific concepts can be 
traced back to data, and are just helpful instruments that do not add anything to our 
knowledge about the world—then, it is to be expected that eventually machines will 
outperform human scientists. For, as especially Duhem’s position suggests, there is 
no good reason to belief that the regularities, patterns and correlations in data found 
by humans would be better than the empirically adequate but opaque data-models 
found by a machines—and additionally, if empiricists are correct, there is no reason 
to doubt that machines will be capable to accurately fit a particular phenomenon 
into data-models stored in machines such as to predict that given a certain input a 
specific output is to be expected (with a specified probability).

There is a large literature on explanation that argues against Hempel’s account of 
explanation, claiming that, although Hempel’s theory may succeed in avoiding the 
(metaphysical) concept of causality, it is insufficient to account for the proper mean-
ing of explanation. Well-known counter-examples, which meet Hempel’s criteria of 
DN or IS explanations but are considered improper explanations, are: the barometer 
explaining the storm (which illustrates the problem of common cause); the length of 
the shadow of the flagpole explaining the length of the flagpole (which illustrates 
the problem of symmetry); and, taking the birth-control pill explaining why male do 
not get pregnant (which illustrates the problem of explanatory relevance). 
Conversely, counter examples that do not meet Hempel’s criteria, but are considered 
proper explanations have been given, such as: the mayor’s untreated syphilis 
explains why he got paresis (which illustrates the problem of low probabilities).

The briefly listed arguments against Hempel’s logical empiricist account of 
explanation concern the meaning of explanation, assessed by what is commonly 
(and rather intuitively) taken as proper and improper (scientific) explanations. The 
listed arguments boil down to the idea that an explanation ought to be an answer to 
a why question, and therefore should refer to a relevant (physical) cause. But 
because reference to hidden causes is based on empirically untestable and thus 
metaphysical convictions, this is indeed what (strict) empiricism aims to avoid.

In the context of this article, the issue is whether the opaque data-model gener-
ated by machine-learning technologies count as explanations for the relationships 
found between input and output. As has been argued above, Duhem rejects (causal) 
explanations entirely, and may therefore agree that the possibility of empirically 
grounded algorithms produced by machines from which new conclusions can be 
derived, proves this even better. So, his point entails that we need no explanations 
anyway. Yet, contrary to Duhem, many of us will hold that we need explanations, and 
that an opaque data-model together with specific conditions producing an outcome—
which basically is the logical or mathematical structure of an explanations on 
Hempel’s account—is not a proper explanation for that outcome. But then the issue 
is, what ‘being a (scientific) explanation’ actually adds, and conversely, what is it 
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that apparently is not provided by the opaque data-model. Does our resistance to the 
idea that an explanation in terms of an opaque data-model is not any better than an 
explanation in terms of theories and laws merely rely on deep ‘scientific realist’ 
intuitions, according to which—paraphrasing Van Fraassen (1980)—an explanation 
gives us a literally true story of what the world ‘behind’ the observable phenomena 
is like? Differently phrased, on a scientific realist view, opaque data- models do not 
provide explanations because genuine explanations describe or represent the unob-
servable (physical) causes (or mechanisms, processes, phenomena, or structures oth-
erwise) that bring about the observed (physical) phenomena. In the last section, I will 
return to this issue, namely whether it is merely our metaphysical disposition, or 
whether genuine explanations are more than data-models that fit the data.

 Data and Phenomena

The issue whether we eventually will need human-made explanatory laws and theo-
ries, rather than opaque data-models that merely fit the data, is at the heart of the 
question about explanation discussed in the previous section. Here, it will be laid 
out that the presuppositions of strict empiricism also challenge the distinction 
between data and phenomena as proposed by Bogen and Woodward (1988), because 
strict empiricism agrees to the idea that phenomena are nothing more than statisti-
cally justified mathematical structures in data.

Bogen and Woodward (1988) contest that there is a direct relationship between 
theories and data as assumed in strict empiricism. Instead, according to B&W, the 
notion of phenomena is crucial for understanding the relationship between data and 
theories. Therefore, different from the empiricist tradition, in particular Van Fraassen 
(1977) who builds on Duhem, a conceptual distinction is needed between data and 
phenomena. Loosely speaking, scientists infer to phenomena based on data, because 
data are idiosyncratic to particular experimental contexts and typically cannot occur 
outside them, whereas phenomena are objective, stable features of the world. 
Phenomena, therefore can occur outside of the experimental context, and are detect-
able by means of a variety of different procedures, which may yield quite different 
kinds of data, whereas data reflect the influence of many other causal factors, including 
factors that have nothing to do with the phenomenon of interest and instead are due to 
the measurement apparatus and experimental design (B&W 1988; Woodward 2011).

B&W’s (1988) position, including some of the clarifications by Woodward 
(2011) and Bogen (2011), can be summarized as follows: (1) Phenomena are dis-
tinct from data, where data is what is directly observed or produced by measure-
ment and experiment; (2) Often phenomena are unobservable, or at least, not 
observable in a straightforward manner; (3) B&W think of phenomena as being in 
the world, not just the way we talk about or conceptualize the natural order—i.e., 
phenomena exist independently of us, but beyond that B&W are ontologically non-
committal; (4) B&W don’t want phenomena to be some kind of low level theories; 
(5) Phenomena are inferred from data; (6) Data produced by measurement and 
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experiment serve as evidence for the existence or features of phenomena; and, (7) 
Theories aim at providing explanations of phenomena, whereas it is difficult to 
provide explanations of data from theory (even in conjunction with theories of 
instruments, non-trivial auxiliaries, etc.).

Bogen and Woodward’s (1988) notion of phenomena has been criticized by sev-
eral authors. McAllister (1997, 2011) assumes that B&W describe phenomena both 
as investigator-independent constituents of the world, and as corresponding to pat-
terns in data-sets. He criticizes this view by arguing that there are always infinitely 
many patterns in any data-set, and so the choice of one as being a phenomenon is 
subjectively stipulated by the investigator, which make phenomena investigator- 
dependent. Also Glymour’s (2002) criticizes on the point that B&W leave open the 
question of how scientists discern or discover phenomena in the first place. Are 
phenomena merely summaries of data? Or is there something more to phenomena 
than just patterns or statistical features. Glymour argues there is not. According to 
him scientists infer from data to patterns by means of statistical analysis, which 
does not add anything new to the data. This implies that phenomena coincide with 
patterns in data, and that no subjective grounds are involved. Accordingly, Glymour 
concludes that Bogen and Woodward are mistaken in thinking that a distinction 
between phenomena and data is necessary, while McAllister (1997) is mistaken in 
thinking that the choice about ‘which patterns to recognize as phenomena’ can only 
be made by the investigator on subjective grounds.7

Within a machine-learning context, we may start to wonder what B&W actually 
have in mind when distinguishing between data and phenomena. They take Nagel’s 
example of the melting point of lead to explain this:

Despite what Nagel’s remarks seem to suggest, one does not determine the melting point of 
lead by observing the result of a single thermometer reading. To determine the melting 
point one must make a series of measurements. […]. Note first that Nagel appears to think 
that the sentence ‘lead melts at 327 degrees C’ reports what is observed. But what we 
observe are the various particular thermometer readings—the scatter of individual data- 
points. […]. So while the true melting point is certainly inferred or estimated from observed 
data, on the basis of a theory of statistical inference and various other assumptions, the 
sentence ‘lead melts at 327.5 + 0.1 degrees C’—the form that a report of an experimental 
determination of the melting point of lead might take—does not literally describe what is 
perceived or observed. (Bogen and Woodward 1988, 308–309, my italics).

7 McAllister (2007) presents an in-depth technical discussion of how to find patterns in data (i.e., 
data-models). He argues that “the assumption that an empirical data set provides evidence for just 
one phenomenon is mistaken. It frequently occurs that data sets provide evidence for multiple 
phenomena, in the form of multiple patterns that are exhibited in the data with differing noise 
levels” (Ibidem, 886). McAllister’s (2007, 885) also critically investigates how researchers in vari-
ous disciplines, including philosophy of science, have proposed quantitative techniques for deter-
mining which data-model is the best, where ‘the best’ is usually interpreted as ‘the closest to the 
truth,’ ‘the most likely to be true,’ or ‘the best-supported by the data.’ According to McAllister, 
these “[data-]model selection techniques play an influential role not only in research practice, but 
also in philosophical thinking about science. They seem to promise a way of interpreting empirical 
data that does not rely on judgment or subjectivity” (Ibidem, 885, my emphasis), which he 
disputes.
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In this example ‘the true value of the temperature at which lead melts’ is consid-
ered to be the phenomenon, which, according to B&W is determined by statistical 
analysis of a set of data taken in measurements. Based on this example, one may be 
inclined to conclude that Glymour (2002) is correct in claiming that phenomena do 
not add anything to data.

In discussing this issue a bit further, I will use the notion ‘physical phenomena’ 
rather than just ‘phenomena’ to stress that phenomena in the sense of B&W are 
considered independently existing (physical) things (objects, properties or pro-
cesses). Additionally, I will use the notion ‘conceptions of phenomena,’ to account 
for the fact, rightly pointed out by B&W, that phenomena are usually not observable 
in a straightforward manner, but need to be discovered and established. Hence, the 
notion of phenomena is connected to the notion of scientific concept, because a 
scientific concept can be considered a conception of a physical phenomenon, which, 
once the meaning of the concept is sufficiently established, becomes a definition in 
a dictionary or textbook. This definition gets the character of a (literal) description 
of the phenomenon (Boon 2012a).

The pressing question is whether the formation of concepts of phenomena 
(including establishing their definitions) will be still required once machine- learning 
technologies are able to find statistically justified patterns in data in the sense sug-
gested by Glymour. More generally phrased, will data-models generated by statisti-
cal analysis of data make all other scientific knowledge superfluous, and will 
machine learning technology be able to generate these data-models?8

 The Semantic View of Theories

Acceptance of scientific knowledge in empiricist epistemologies involve two impor-
tant rules: knowledge must be objective, and it must be testable. Ideally, therefore, 
knowledge and the way in which it is tested must be independent of specificities of 
human cognition, and the measured data used for testing it must be independent of 
the knowledge to be tested. The so-called semantic view of theories, which in one 
or another version is held by authors such Suppes (1960), Van Fraassen (1980), 
Giere (1988, 2010), Suppe (1989), and Da Costa and French (2003), accounts for 

8 Affirmative answers to these questions can be taken as an interpretation of Anderson’s position. 
Notably, even machine learning scientists and textbooks promote that knowledge of any sort 
related to the application (e.g., knowledge of concepts, of relevant and irrelevant aspects, and of 
more abstract rules such as symmetries and invariances) must be incorporated into the learning 
network structure whenever possible (Alpaydin 2010, 261). Abu-Mostafa (1995) calls this knowl-
edge hints, which are the properties of the target function that are known to us independently of the 
training examples – i.e., hints are auxiliary information that can be used to guide the machine’s 
learning process. The use of hints is tantamount to combining rules and data in the learning net-
work structure – hints are needed, according to Abu Mostafa, to pre-structure data-sets because 
without them it is more difficult to train the machine. In image recognition, for instance, there are 
invariance hints: the identity of an object does not change when it is rotated, translated, or scaled.
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testing theories. It aims to account for the structure of theories and the independent 
relationship between theories and measurements, that is, between the outcomes  
predicted by the theory, and the outcomes of a measurement, by reducing the  
relationships between abstract theories, models and measured data to semantic  
relationships between abstract logical-, mathematical-structures and data-structures 
(see Schema 1).

Loosely speaking, the semantic view posits that a theory is a (usually deductively 
closed) set of sentences in a formal language, such as an abstract calculus, an axi-
omatic system, or a set of general laws (such as Newton’s equations of motion), 
which enables to deduce logical consequences about particular types of physical 
systems (such as the model of a pendulum). The resulting model is a structure which 
is an interpretation (or realization) of the theory. Conversely, the theory represents 
the structure of the model. On this view, testing the adequacy of a theory only 
requires isomorphism (or similarity) between the model of the theory for a particu-
lar kind of system, and the measurement results called a model of the data. In brief, 
the semantic view explains how a theory is compared with measurements.9 On Van 
Fraassen’s (1980) version, testing whether a theory is empirically adequate means 
to assess (partial) isomorphism of a (mathematical) structures predicted by the  
theory (the models of the theory) and the structure in a set of measured data  
(the models of the data).

Obviously, the focus of the empiricist epistemology expressed in the semantic 
view is on the theory and how to test it. The question is not, for instance, whether 
the data-model is adequate. Conversely, in machine learning, the focus is on the 
data-model and how to test whether it is adequate. Therefore, from a machine learn-
ing perspective, someone may now ask ‘why bother about the theory?’ If machine 
learning technology can generate adequate data-models based on data, we do not 
need the theory any longer. Assume that a machine-learning technology has pro-
duced a data-model (although opaque and incomprehensive) that fits the data (see 
right part of Schema 1), and assume that the model of the theory is (partially) iso-
morphic with the data-model (see middle part of Schema 1), why would we need the 
left part of this schema anyway? Since, in empiricist epistemologies, the data and 
the data-model are taken as the solid ground of knowledge, the theory seems to be 
an unnecessary surplus. Hence, the semantic view of theories supports the idea that 

9 Notably, ‘phenomena’ in the sense of Bogen and Woodward (1988) do not occur in this view. 
Rather than phenomena, as B&W claim, the model of data mediates between the measured data 
and the model of the theory, which is a specific instantiation (interpretation, concretization) of the 
theory (see Schema 1).

Schema 1 Semantical relationships between a theory and measured data according to the seman-
tic view. Theory acceptance when (partial) isomorphism between model of theory and model  
of data
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scientific knowledge in the form of theories or models does not add much to empiri-
cally adequate and/or statistically sound data-models to represent data. Accordingly, 
it supports the belief that ultimately scientific knowledge is no longer needed. 
Again, the empiricist tradition offers hardly any possibilities for a more positive 
appreciation of scientific theories and the epistemic and cognitive roles of human 
scientists.

 Knowledge in the Age of Machine-Learning Technologies

 Empiricist Epistemologies: Theories Add Absolutely Nothing 
to Data-Models

In the previous section, it has been defended that a consequence of presuppositions 
and requirements of (anti-realist) empiricist epistemologies is that explanations, 
phenomena, and theories generated in science can (in principle, although maybe not 
yet in practice) be represented by, reduced to, or replaced with data-models gener-
ated by machine learning technologies. Empiricist epistemologies require that data- 
models adequately fit the data, but there are no specific epistemological reasons to 
require that data-models are intelligible for humans—that is, the fact that data- 
models generated by machines usually are opaque and incomprehensive for humans 
is not a problem in regard of the epistemic value of data-models. Additionally, refer-
ring to Duhem, and in his footsteps Van Fraassen, theories tell us absolutely nothing 
about hidden realities—rather, different theories may be equally capable of repre-
senting a given set of experimental laws. When taking experimental laws, in 
Duhem’s wordings, to be data-models, this implies that no additional epistemic 
value is gained by theories over data-models, especially when data-models accu-
rately represent large data-sets achieved by machine learning technologies. Hence, 
taking the semantic view of theories as a proper advancement of Duhem’s ideas 
implies that the epistemic value of theories is to adequately represent data-models, 
where ‘represent’ means ‘structural similarity,’ i.e. being (partially) isomorphic. In 
turn, data-models represent the measured data. If we assume that representational 
relationships in science are transitive, this implies that from an epistemological 
point of view empirically adequate theories do not add anything to empirically ade-
quate data-models10—as empirically adequate data-models already allow for ade-
quate predictions of ‘real-world’ data, theories and models become unnecessary 
(see Schema 1). As a consequence, the claim that machine learning technologies 
will render human scientists and scientific knowledge superfluous accords with 
beliefs about the epistemic value of theories in anti-realist empiricist epistemologies. 

10 This claim only holds for anti-realist interpretations (as in Duhem and Van Fraassen) of the 
semantic view. Yet, the semantic view of theories also allows for realist interpretations of theories 
(e.g., Suppe 1989).
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Empiricist epistemologies, therefore, support Anderson’s (2008) claims cited in  
the introduction. Having this said, several arguments can be put forward against  
this conclusion.

 Scientific Realism in Defense of Science

Anderson’s (2008) claims can be more easily countered from scientific realist than 
from anti-realist viewpoints. Scientific realist positions are supported, at least in 
part, by the no-miracle argument: the successes of scientific theories would be a 
miracle unless we assume that theories truthfully describe or represent hidden reali-
ties behind the phenomena, which is why scientific realism is the best explanation 
for the successes of science. As a consequence, data-models, whether produced by 
human scientists or by machines, are epistemologically inferior to theories. 
Accordingly, contrary to the conclusion inferred from anti-realist empiricist episte-
mologies, scientific realists will believe that the successfulness of (approximately) 
true scientific theories cannot be superseded by data-models.

Additionally, scientific realists may argue that scientific theories have an intrin-
sic value, which has nothing to do with their epistemic or practical usefulness any-
way. Many theories are not useful, at least not to begin with. One may even defend 
that the aim of science is not useful theories, but true theories. Science may be of 
epistemic and practical value to all kinds of applications such as in engineering and 
medicine, but this is a by-product of science, not its intended aim (also see Boon 
2011, 2017c). Rather, science has an intrinsic cultural value in telling us what the 
world is like, which is a task that cannot be replaced by machine learning technolo-
gies whatsoever since incomprehensive, opaque data-models do not tell us anything 
meaningful about the world. Therefore, ‘real science’ and machine learning tech-
nologies operate in very different domains and must not be regarded as competing.

 The Pragmatic Value of Scientific Knowledge in Epistemic Tasks

Empiricist epistemologies do not deny the pragmatic value of science and agree 
indeed that pragmatic criteria play a role in the acceptance of theories, but only 
deny that pragmatic criteria add to the epistemic value of theories (e.g., Van Fraassen 
1980). In section “Empiricist epistemologies”, it has been argued that machine- 
made data-models may become capable to perform better in regard of epistemic 
criteria (esp. empirical adequacy regarding the data) as compared to human-made 
scientific knowledge. In addition, it has been suggested that the generation and use 
of data-models for all kinds of epistemic tasks can be carried out by machine learn-
ing technology, which will in many cases perform better than human scientists who 
aim to generate and use scientific knowledge for similar tasks (see overview in sec-
tion “Machine-learning”). It has also been argued that machine-made data-models 
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usually are incomprehensible, opaque, and even inaccessibly ‘sitting’ in the 
machine, to the effect that they cannot be used by human epistemic agents. Therefore, 
machines do not produce scientific knowledge as in ‘traditional’ scientific prac-
tices— i.e., epistemic entities such as theories, laws, models and concepts that can 
be obtained from the machine and utilized in, say, self-chosen epistemic tasks by 
humans. Even if it were possible to obtain the data-models from the machine, they 
would be useless for epistemic uses by humans as these data-models do not meet 
relevant pragmatic criteria to enable such uses. The other way around, in order to be 
useful for humans in performing epistemic tasks, scientific knowledge must also 
meet pragmatic criteria.

The crux of pragmatic criteria such as consistency, coherency, simplicity, explan-
atory power, scope, relevance and intelligibility in generating and accepting scien-
tific knowledge is to render scientific knowledge manageable for humans in 
performing epistemic tasks. I will leave unanswered whether machine learning 
technologies cannot offer this in principle. But if they cannot, a future without sci-
ence would require machines to take over every epistemic task, which seems 
unlikely already regarding our daily interactions with the world.

 Preparing the Data

Much needs to be in place before the machine-learning can even begin. Data-sets 
need to be generated, prepared and gathered, which requires epistemic activities by 
humans, such as designing experimental set-ups and measurement equipment (e.g., 
as in the experiments of Boyle, etc. in section “Introduction”). These epistemic 
tasks require scientific and background knowledge. As stated above, knowledge 
must meet specific pragmatic criteria to be manageable when performing epistemic 
tasks. For example, knowledge must be such that epistemic agents can see which 
real-world target-systems the knowledge is applicable to—for example, in order to 
recognize or explain specific phenomena in the data-generating experimental set-
 up. Conversely, it requires of scientists to have the cognitive ability to think, theo-
rize, conceptualize, explain, mathematize, and interpret by means of scientific 
knowledge when performing epistemic tasks, not only when setting up the data- 
generating instrumentation and seeing to its proper functioning, but also in assess-
ing and interpreting the data, drawing relationships between data from different 
sources, and for making the distinction between ‘real’ phenomena and artifacts. 
These crucial cognitive abilities go well beyond what empiricist epistemologies can 
explain, require, or allow in view of the requirements of objectivity.

The necessity to prepare data that are about something in the real world also 
implies that phenomena are crucial in scientific practices, even when only aiming at 
the generation of data for machine-learning processes. Harking back to the discus-
sion above, the way in which Bogen and Woodward (1988) think about phenomena 
forces them to accept that phenomena coincide with data-models. However, this 
notion of physical phenomena is far too narrow regarding the uses of this notion in 
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scientific practices, even if only practices aimed at measuring data. The description 
of a physical phenomenon such as ‘lead melts at 327.5 + 0.1 degrees C’ is not 
grasped by the number (i.e., the value) in this proposition. In contrast to the data- 
model that is statistically derived from the measurements in the way suggested by 
B&W, the described phenomenon can be analyzed in terms of a set of interrelated 
heterogeneous aspects, such as: the observation that substances (including lead) can 
melt; an understanding of the concept ‘temperature’ (also see Chang 2004); the 
observed regularity that a substance (including lead) always melts at approximately 
the same temperature; an understanding of the concept ‘melting-point’; the concep-
tion that ‘having a melting-point’ is a specific characteristic of substances; the regu-
lative principle that at the same (experimental) conditions the same effects will 
happen (Boon 2012b); the assumption that the temperature at which a substance 
melts (the melting-point) is an exact number; the assumption that the temperature 
can be measured at a pretty high accuracy; the decision or assumption that the 
observed fluctuations in the observed melting temperatures are due to (partially) 
unknown causes of the experimental set-up and measurement tools (e.g., Mayo 
1996); and finally, an understanding of the workings of the measurement tools. In 
short, the full conception of the physical phenomenon consists of a collection of 
heterogeneous, mutually related but heterogeneous aspects, which are generated in 
a number of cognitive actions by human scientists, rather than being a statistically 
derived number only.

This elaboration of B&W’s example shows that skills, knowledge, and under-
standing of scientists are required to establish both the physical phenomenon—
which involves the experimental and measurement set-up, and also their proper 
operations to get a stable and reproducible measurement of the temperature at which 
lead melts—, as well as the conception of the phenomenon, even if the phenomenon 
under study is as simple as ‘lead melts at 327.5 + 0.1 degrees C.’ Additionally, this 
brief analysis shows that the formation of the concept of a phenomenon and physi-
cally establishing it in an experimental set-up, go hand-in-hand, and necessarily 
involve all kinds of basic assumptions that cannot be empirically tested (Chang 
2004; Boon 2012a, b, 2015).

Expanding on this analysis, it can be argued that empiricist epistemologies are 
flawed in believing that the theory-ladenness of data is fundamentally problematic 
as it threatens the objectivity of science. More specifically, Bogen and Woodward 
are mistaken to hold that phenomena should not be some kind of low-level theories 
(claim 4). To the contrary, theory-emptiness of data fed to machine-learning pro-
cesses would really be a problem. In actual scientific practices, the production of 
data representing supposed physical phenomena usually develops in a process of 
triangulation together with the development of the experimental set-up and mea-
surement techniques and with the construction and application of scientific knowl-
edge of all kinds. The data, phenomena and theory, as well as our interpretations of 
measurements and understanding of the working of instruments and experimental 
set-ups are intrinsically conceptually entangled (e.g., Chang 2004; Feest 2010; Van 
Fraassen 2008, 2012; Boon 2012a, 2017a; Van Fraassen 2008, 2012).

M. Boon



61

 Epistemic Tasks in Engineering and Biomedical Sciences

In machine-learning-technologies, descriptions of (physical or social) phenomena 
are reduced to (and represented by) data-models, which is considered unproblem-
atic within empiricist epistemologies. As sketched above, the data or data-model 
representing the phenomenon entail hardly any information relevant to epistemic 
tasks in dealing with phenomena, for instance, in aiming to interact with the tar-
geted phenomenon in one or another way.

Yet, these kinds of epistemic tasks are at the center of the so-called applied sci-
ences such as the engineering and biomedical sciences. These research practices 
aim at scientific knowledge about targeted (bio)physical phenomena, and about 
technological instruments that can possibly produce or control them—for the sake 
of the targeted phenomenon, not first theories, which are considered to be the focus 
of basic sciences.11 These practices function in the way sketched above, which is to 
say that experimentally producing and investigating targeted phenomena (e.g., a 
phenomenon we aim to produce for a specific technological or medical function) is 
entangled with the generation of scientific knowledge and the development of tech-
nological instruments and measurement apparatus relevant to the phenomenon. 
Every tiny step in these intricate research processes involves epistemic tasks—e.g., 
to explain, interpret, invent, idealize, simplify, hypothesize, model, mathematize, 
design, and calculate—for which all kinds of practical and scientific knowledge is 
crucial and needs to be developed in the research process. Therefore, scientific 
knowledge needs to be comprehensible to the extent that it allows for these  epistemic 

11 In other work, I have explained from a range of different philosophical issues, the crucial role of 
phenomena in the ‘applied’ research practices and what this means for our philosophical under-
standing both of scientific knowledge and of the aim of science (Boon 2011, 2012a, b, 2015, 
2017a, c, forthcoming). The idea that these application-oriented scientific research practices aim at 
scientific knowledge in view of epistemic tasks aimed at learning how to do things with (often 
unobservable, and even not yet existing) physical phenomena has led to the notion of scientific 
knowledge as epistemic tool (Boon and Knuuttila 2009; Knuuttila and Boon 2011; Boon 2015; 
Boon 2017b,c; also see Nersessian 2009; Feest 2010; Andersen 2012). The original idea of scien-
tific knowledge (or, originally more narrowly stated, ‘scientific models’) as epistemic tools, pro-
poses to view scientific knowledge—such as descriptions, concepts, and models of physical 
phenomena—firstly as representations of scientists’ conceptions of aspects of reality, rather than 
representations in the sense of a two-way relationship between knowledge and reality (as in anti-
realist empiricist epistemologies as well as in scientific realism). The point of this (anti-realist) 
view is that someone can represent her conception (comprehension, understanding, interpretation) 
of aspects of reality by means of representational means such as text, analogies, pictures, graphs, 
diagrams, mathematical formula, and also 3D material entities. Notably therefore, scientists’ con-
ceptions of observable as well as unobservable phenomena arrived at by intricate reasoning pro-
cesses (creative, inductive, deductive, hypothetical, mathematical, analogical, etc.), which employ 
all kinds of available epistemic resources, can be represented. By representing, scientists’ concep-
tions become epistemic constructs that are public and transferable. Knuuttila and I have called 
these constructs epistemic tools, that is, conceptually meaningful tools that guide and enable 
humans in performing all kinds of different epistemic tasks.
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tasks. Especially regarding these kinds of practically oriented scientific research 
practices in which human scientists aim at comprehensible scientific knowledge  
as well as epistemic and practical resources such as measurement instruments,  
technological procedures, and methods, it is inconceivable that machine- learning- 
technologies will make science and scientists superfluous.

 The Error of Empiricism

Empiricist epistemologies insufficiently account for the types of epistemic tasks 
that are crucial for the development and use of epistemic and practical tools, which 
in turn are used in the development of, for instance, medical technologies. This 
shortcoming already applies to the generation of data that can be fed to machines 
that generate data-models for specific purposes. Empiricist epistemologies there-
fore miss out on crucial aspects of the uses and generation of scientific knowledge 
(theories, models, etc.) in intricate scientific processes taking place in application- 
oriented research practices like the engineering and biomedical sciences, and thus 
give room to beliefs such as defended by Anderson (2008). Rethinking the philo-
sophical presuppositions of empiricist epistemologies that seem to force us to the 
view that science will become superfluous in the age of machine learning can help 
in gaining insights that bring the scientist back into science.
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