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Abstract. The diagnosis and prognosis of cancer are among the more challeng-
ing tasks that oncology medicine deals with. With the main aim of fitting the more
appropriate treatments, current personalized medicine focuses on using data from
heterogeneous sources to estimate the evolution of a given disease for the partic-
ular case of a certain patient. In recent years, next-generation sequencing data
have boosted cancer prediction by supplying gene-expression information that
has allowed diverse machine learning algorithms to supply valuable solutions to
the problem of cancer subtype classification, which has surely contributed to bet-
ter estimation of patient’s response to diverse treatments. However, the efficacy
of these models is seriously affected by the existing imbalance between the high
dimensionality of the gene expression feature sets and the number of samples
available for a particular cancer type, To counteract what is known as the curse
of dimensionality, feature selection and extraction methods have been tradition-
ally applied to reduce the number of input variables present in gene expression
datasets. Although these techniques work by scaling down the input feature space,
the prediction performance of traditional machine learning pipelines using these
feature reduction strategies remains moderate. In this work, we propose the use
of the Pan-Cancer dataset to pre-train deep autoencoder architectures on a subset
composed of thousands of gene expression samples of very diverse tumor types.
The resulting architectures are subsequently fine-tuned on a collection of specific
breast cancer samples. This transfer-learning approach aims at combining super-
vised and unsupervised deep learning models with traditional machine learning
classification algorithms to tackle the problem of breast tumor intrinsic-subtype
classification. Our main goal is to investigate whether leveraging the information
extracted from a large collection of gene expression data of diverse tumor types
contributes to the extraction of useful latent features that ease solving a complex
prediction task on a specific neoplasia.

Keywords: Next-generation sequencing; Deep Learning; Autocoders; Machine
Learning; Transfer-learning; Predictive modelling

1 Introduction

Over the last decade, Next Generation Sequencing (NGS) techniques have transformed
fields such as biochemistry, biology or medicine, generating an unprecedented vast
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amount of data that is analyzed by the omics disciplines: genomics, transcriptomics,
proteomics, metabolomics and epigenomics [1]. In particular, gene expression data
analysis (transcriptomics) plays an increasingly important role in P4 medicine–which
stands for predictive, preventive, personalized and participatory–, due to the advent of
the high-throughput sequencing technology called RNA-Seq [2]. In areas such as on-
cology, gene expression data offers a new way of describing the molecular state of a
patient. As cancer is considered to be a genetic disease, a gene expression sample from
a patient–which describes the genetic changes responsible for the progression of the
disease, such as the over-activity or the repression of genes–contains information of
paramount importance for the prevention, diagnosis and treatment of this malignant
disease.

Enormous potential exists for machine learning (ML) methods to analyze these data
in order to solve many different cancer prediction tasks. In fact, numerous ML studies
have been proposed to tackle the problem of cancer diagnosis and prediction using gene
expression data [3, 4]. However, in clinical tasks such as cancer detection, the number
(M) of available samples to solve a concrete problem is usually scarce (300-1K), while
the number (N) of input features (genes or transcripts) is extremely large (10K-60K).
This existing imbalance between both figures, seriously diminishes the performance of
ML approaches when applied to gene expression data. To counteract the effects of what
is known as the curse of dimensionality (N�M) [5], various traditional ML dimension-
ality reduction techniques, such as feature selection and extraction methods [6], have
been applied to reduce the number of input variables. Although these techniques scale
down the input feature space, the prediction performance of traditional ML methods
remains moderate, as the features-samples imbalance problem is only partly solved. In
this way, the reduced number of labeled samples used to train the ML models does not
allow them to extract from the data the hidden patterns that contribute most to improve
the performance of the predictive models.

With the aim of solving the problematic effects derived from the curse of dimension-
ality in a more effective way, a deep learning (DL) approach can be adopted. Nowadays,
DL is the state-of-the-art technology in fields such as image recognition and natural lan-
guage processing [7]. In particular, deep autoencoders (AEs) are specifically designed
to exploit unlabeled data and learn high-level features, being widely employed as a fea-
ture extraction procedure [8]. In this work, we will apply different deep AE models to
perform feature extraction on gene expression data, hence reducing the high number of
initial features.

On the other hand, when having such a reduced number of samples, training a DL
architecture from scratch would lead the model to serious over-fitting issues. Diverse
strategies, such as data augmentation or transfer learning (TL) approaches are com-
monly used to prevent these issues. Namely, in a typical TL approach an initial DL
model is pre-trained on a base dataset aimed at solving a base task. The pre-trained
model is subsequently fine-tuned on a target dataset used to solve a target task, i.e. the
final task (notice that base and target refer to different datasets and tasks). For the TL
approach to work properly, the base dataset must contain a much greater number of
samples than the target dataset. This technique has been successfully applied to many
different domains, such as text classification, image processing or software error de-
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tection [9]. Here, we apply a TL approach to pre-train several deep AE models in an
unsupervised manner using a large collection of unlabeled tumor samples. These pre-
trained AE models are further fine-tuned on a smaller collection of labeled samples to
solve a concrete supervised task for breast cancer (BRCA) subtype classification .

In fact, although the contributions of DL to cancer prediction using gene expres-
sion data are just starting to emerge and there are not yet numerous studies [10], [11],
a few recent works have already successfully applied a TL strategy using AEs to solve
different cancer classification tasks. In [12], the authors pre-trained a stacked sparse
autoencoder (SSAE) using unlabeled samples from two different tumors, and then fine-
tuned the architecture using labeled samples from a third tumor type to differentiate
between normal and tumor samples. In [13], traditional ML classifiers were applied
using the high-level features extracted by a SSAE model in order to separate samples
from two distinct tumor types. However, the cancer prediction tasks tackled by these
preliminary studies are very general and relatively simple, as they aimed at classifying
gene expression samples into tumor or normal classes, or distinguishing between differ-
ent tumor types, which are manageable task successfully tackled by traditional feature
selection and ML methods. Furthermore, the number of samples used in these studies
to pre-train the deep models could still be considered as scarce (∼ 400-1.5K).

In this work, we use the Pan-Cancer dataset to pre-train deep AE architectures on
9K samples obtained from 32 different tumor types. The resulting architectures are then
fine-tuned on a collection composed of ∼ 900 BRCA samples, aimed at solving a very
specific cancer prediction task: breast tumor intrinsic subtypes classification. Our main
goal is to investigate whether pre-training these DL models, by using a large collection
of heterogeneous gene expression data from 32 distinct tumor types, contributes to the
extraction of useful latent features that ease solving a complex cancer prediction task,
such as the classification of BRCA subtypes. By means of a TL strategy, in this study
we train and fine-tune different AE models and architectures to work as feature extrac-
tors, and use the extracted latent features as the input of three different ML classification
algorithms that are analyzed in a comparative manner: logistic regression (LR), support
vector machines (SVM) and shallow artificial neural networks (ANN). To evaluate the
efficacy of the proposed TL approach, we compare the results obtained using the AE
models with the performance achieved by those same three ML models when using
four traditional dimensionality reduction methods: analysis of variance (ANOVA) fea-
ture selection, mutual information feature selection, chi-squared feature selection and
principal component analysis (PCA).

The rest of the paper is organized as follows. Section 2 describes the gene expres-
sion datasets used within the analysis, as well as the different AE models, the transfer-
learning strategy and the feature selection/extraction techniques used in combination
with ML classifiers, which deal with the cancer prediction task being tackled in this
study. The cross-validation strategy followed to assess the performance of the different
approaches compared in this paper is also presented in that section. The results obtained
from the analysis are given in Section 3 and, finally, some conclusions are provided in
Section 4.
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2 Materials and Methods

The work-flow of our TL approach is shown in Fig. 1, and the details of our method are
discussed in the next subsections.

2.1 Gene expression data and feature pre-selection

Tha Pan-Cancer dataset from The Cancer Genome Atlas (TCGA) project was used
in this study [14], accessed from the UCSC Xena data browser [15]. This dataset
consists of ∼ 11K RNA-Seq gene expression samples from 33 different tumor types,
which have been previously pre-processed to take into account batch effects, using
log2(T PM + 0.001) transformed RSEM values. The initial number of features (tran-
scripts) was 60498, which is an intractable number for any ML model. In order to
perform an initial reduction of the feature space, we applied an unsupervised feature
selection strategy. Firstly, using the standard deviation (SD) measure, the variables with
constant expression values across all the samples were removed. Then, according to the
meadian absolute deviation (MAD), the∼ 9K most variably expressed genes across the
samples were selected, having a final dataset of 10535 samples and 9076 features.

2.2 Dataset split

Rather than using the whole Pan-Cancer dataset, we split the data into two distinct sub-
sets: one of the subsets contains only the BRCA tumor samples (BRCA dataset, 1212
samples), whereas the other one includes the remaining samples from the rest of the 32
tumor types (non-BRCA dataset, 9323 samples). The rationale for this split is that the
labeled information relating to the cancer prediction task tackled in this work is only
contained in the BRCA tumor samples (see section 2.4). For that reason, following a TL
approach, as it is described in Fig. 1, the non-BRCA dataset is used during the unsuper-
vised pre-training phase, while BRCA data containing the available labeled information
is used to perform the supervised fine-tuning of the models.
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Fig. 1: A general overview of the TL strategy used in this work to perform BRCA
instrinsic-subtypes classification.
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2.3 Unsupervised pre-training of deep AE models

An AE, in its simplest (i.e. shallowest) form, is a feed-forward neural network with
only three layers: an input, a hidden and an output layer (Fig. 2A). It is an unsupervised
learning method for which the main aim is to reconstruct, at the output layer, a pattern
given to the input layer, so that the reconstructed output pattern is as closely similar
as possible to the original input pattern. This is done by training the network using
the back-propagation algorithm to minimize the reconstruction error, a function that
computes the difference between the input and the output vectors.

Given an input x = {x1,x2, ...,xn}, an AE tries to learn a function x̂ ≈ x (Fig. 2A).
The function that transforms the input into a hidden representation is called the encoder,
and can be expressed as h(x) = f (Wx+ b), where f is the hidden activation function,
W is the hidden weight matrix and b is the bias vector of the hidden layer. Given n the
number of units in the input layer and k the number of hidden units, the matrix W is of
dimensions n× k. On the other hand, the function that takes the hidden representation
and transforms it into the reconstructed input representation is called the decoder, and
can be expressed as x̂(h) = g(W ′h+b′), where g is the output activation function, W ′ is
the output weight matrix and b′ is the bias vector of the output layer.

Having a hidden layer with fewer units than the input layer (i.e. k < n), forces the
AE to compress the input vector into a lower dimensional representation, which can be
reconstructed to its initial representation. In this case, the AE can be used as a dimen-
sionality reduction method, in particular as a feature extraction procedure.

Constraining the network, such as using a small number of hidden units, has demon-
strated to force the AE to extract more abstract and meaningful features in the hidden
representations. In addition to reducing the number of hidden units, another popular
way of constraining the model is using what is called a sparsity penalty [16]. This
penalty creates sparse representations, in which hidden units tend to be inactive most of
the time, favoring the units specialization. The sparsity constraint can be implemented
using L1-regularization in the hidden layers, which is added to the reconstruction error
function. In this way, for an input vector x ∈ ℜn, if the mean squared reconstruction
error as well as positive hidden activation functions are used, the overall loss function
minimized during the learning procedure can be expressed as:

Jsparse(W,b) =
1
n

n

∑
i
(xi− x̂i)

2 +λ

k

∑
j
|h j|

where n is the number of input and output units, k is the number of hidden units,
h j is the activation value of the j-th hidden unit and λ is the L1-regularizer penalty.
The first term corresponds to the input reconstruction error, whereas the second term
represents the L1-regularization, which tends to decrease the absolute values of the
hidden activations towards zero, acting as a sparsity constraint.

Finally, another widely used approach to constrain the network is known as de-
noising AE [17]. During training, noise is added to the input data, and the difference
between the input reconstruction and the original noiseless data is minimized using
back-propagation. Thus, the goal of the network is to obtain a hidden representation
robust to the introduction of noise at the input layer. In order to be able to reconstruct
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Fig. 2: Different AE architectures. A The architecture of a basic AE, where
{x1,x2, ...,xn} are the units of the input layer, {h1,h2, ...,hk} are the hidden units and
{x̂1, x̂2, ..., x̂n} represent the output neurons. B The architecture of a deep AE with 3
hidden layers.

the input correctly, the corruption of the input data forces the network to extract more
abstract and meaningful features in the hidden representation. This can be easily imple-
mented using dropout in the input layer of the AE network [18].

In this work, with the purpose of extracting complex non-linear patterns from the
high-dimensional gene-expression data, two different deep AE approaches have been
implemented and analyzed: a deep sparse model with 3 hidden layers (see Fig. 2B), and
a deep sparse denoising AE with 5 hidden layers. In both cases, the sparsity constraint
has been implemented using an L1-regularization penalty for all the hidden layers in the
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encoder sub-networks. On the other hand, dropout has been used to introduce the noise
necessary for the deep sparse denoising AE to work as expected. In addition, with the
aim of reducing the initial number of features (9076) in an incremental way, the deep
sparse AE uses 5K units in hidden layer 1 and 500 unit in hidden layer 2. For its part,
the deep sparse denoising network counts on 5K nodes in hidden layer 1, 2K nodes
in hidden layer 2 and 500 nodes in hidden layer 3. In terms of the number of units of
each layer, both architectures are symmetric with respect to the central hidden layer,
i.e. hidden layer 2 in case of the deep sparse AE and hidden layer 3 in the deep sparse
denoising model. Additionally, for comparison reasons, we have also implemented a
shallow sparse architecture (see Fig. 2A), which uses a single hidden layer of 500 units
in which L1-regularization is employed as the sparsity constraint.

Finally, with the purpose of training the AEs using a large collection of unlabeled
gene expression samples from 32 different tumor types, the models are pre-trained using
the non-BRCA dataset in an unsupervised way. Before pre-training the AEs, the non-
BRCA gene expression dataset is normalized using zero-one scaling. The activation
function of the output layer of all three AE models is a sigmoid.

2.4 Supervised fine-tuning

Once pre-trained, the resulting AEs are fine-tuned using the BRCA dataset. The cancer
prediction task tackled in this work is breast tumor instrinsic-subtypes classification.
Hence, the variable to be predicted is the PAM50 intrinsic subtype, included among the
clinical output variables contained in the BRCA samples from the Pan-Cancer dataset.
PAM50 is a widely used 50-gene BRCA intrinsic subtype predictor [19], which groups
the samples into four main subtypes: Luminal A, Luminal B, Basal-like and Her-2
enriched. From the 1212 samples contained in the BRCA dataset (see Section 2.2),
we only select the samples for which PAM50 subtypes information is known, giving a
final BRCA dataset composed of 845 labeled samples (see Fig. 1). Since each sample
in this dataset is labeled with one of the 4 possible PAM50 subtypes, the classification
task becomes a multi-class prediction problem with 4 different classes.

To perform the fine-tuning of the AEs using the BRCA samples labeled with the
PAM50 subtype labels, the unsupervised AE models have to be transformed into su-
pervised models. To do so, the decoder part of the networks (see Fig. 2) is replaced
by a softmax output layer with 4 units (one for each BRCA intrinsic subtype). Finally,
the resulting network architectures are fine-tuned in an supervised manner, using back-
propagation to minimize the categorical cross-entropy loss function.

2.5 Autoencoders for feature extraction

After fine-tuning the models, we eliminate the softmax output layer from the AEs, so
that only the encoder part of the networks remains available. In this way, the resulting
fine-tuned encoders are used as feature extraction mechanisms. Thus the encoders work
by propagating forward the high-dimensional patterns given as their input, so that they
are transformed, layer by layer, to get a final latent representation with fewer number of
variables than the original gene-expression data. These extracted features are then used
as inputs that are fed into three different ML classifiers, namely LR, SVM and ANN,
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which are both trained in a supervised manner and evaluated using the PAM50 subtyes
information.

2.6 Comparison to other dimensionality reduction methods

With the aim of evaluating the efficacy of the deep AEs as feature extraction meth-
ods, we compare them to other classical feature extraction and selection algorithms
when they are used in combination with the same three ML supervised models (i.e.
LR, SVM and shallow NN) to tackle the PAM50-subtypes prediction task. Namely, we
compare the AE feature-extraction networks to three different feature selection meth-
ods, ANOVA, mutual information and chi-squared feature selection, as well as a fea-
ture extraction procedure, PCA. Like the encoders obtained from the pre-trained and
fine-tuned AEs, these algorithms are also applied to reduce the number of features con-
tained in the labeled BRCA dataset. Again, the selected/extracted variables given by
these methods are used as the input for three ML classifiers (LR, SVM, ANN), which
are trained and evaluated using the PAM50 intrinsic subtypes labels.

Note that, on the one hand, the main difference between the TL approach (feature
extraction via AE + ML classifier) and the traditional ML pipeline (classical feature se-
lection/extraction algorithm + ML classifier) used in this study is the strategy employed
to reduce the dimensionality of the gene expression data, as the same classification al-
gorithms are used by both methods to perform the PAM50 subtypes prediction task.
On the other hand, while the TL strategy makes use of both the non-BRCA—for un-
spervised learning—and the BRCA dataset—for supervised learning—, only the BRCA
dataset is used in a supervised manner in the traditional ML pipeline followed in this
work for comparison purposes.

2.7 Validation scheme

In this work, a 10-fold cross-validation (CV) scheme is used to estimate the predic-
tive performance of each model using the labeled BRCA dataset. The average accuracy
(ACC) calculated across the 10 test folds is used as the evaluation measure. Regarding
the optimization of models’ hyper-parameters, Random Search [20] with 20 iterations
was performed using 5-fold CV within each of the 10 train folds, thus carrying out
a nested CV procedure, using the inner 5-fold CV for model selection and the outer
10-fold CV for model evaluation. In case of the TL approach, both the fine-tuning
hyper-parameters of the deep AE models (such as dropout, learning rate, momentum
and number of epochs) and the hyper-parameters of the ML classifiers (such as ker-
nel function, C and gamma for SVM and the hidden layer size, learning rate and mo-
mentum for ANN) are tuned, whereas in case of the traditional ML pipeline, only the
hyper-parameters of the ML supervised models are optimized.

3 Results

Table 1 shows the average accuracy (ACC) and standard deviation from the 10-fold
cross-validation obtained by each combination of feature selection/extraction method
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and ML model, when predicting PAM50 intrinsic subtypes. The rows in the table rep-
resent the different methods used to reduce the dimensionality of the gene-expression
data, whereas the columns stand for the classification algorithms used to perform the
PAM50-subtype prediction task. While the first four rows in Table 1 correspond to the
classical feature selection/extraction procedures analyzed in this study, the last three
represent the distinct AE architectures used within the TL approach for feature extrac-
tion proposed in this paper. Additionally, Fig. 3 contains a box-plot that depicts the
10-fold CV ACC test values distribution obtained by each ML classifier when using the
selected/extracted features given by the different dimensionality reduction procedures.

Table 1: Average and standard deviation from 10-fold CV ACC test results.

Feature selection/ ML classifier

extraction method LR SVM ANN
ANOVA 90.76±3.03 90.99±2.87 91.24±3.37

Mutual Information 90.99±1.94 91.35±1.90 90.75±1.74
Chi-Squared 88.07±3.04 86.35±3.86 86.96±3.62

PCA 90.62±2.71 90.50±3.72 90.62±3.37
Sparse AE 87.10±2.84 88.08±3.83 88.21±4.53

Deep Sparse AE 88.31±2.95 88.68±3.10 89.91±3.97
Deep Sparse Denosing AE 89.29±4.13 89.88±2.77 90.26±2.85

In terms of the average test ACC, if we compare only the results obtained by
the approaches using the different AE models as feature extraction methods, for all
ML classifiers (i.e. LR, SVM and ANN), the deep sparse architecture performs better
(88.31, 88.68 and 89.91, respectively) than the shallow sparse network (87.10, 88.08
and 88.21). Moreover, the deep sparse denoising AE obtains better performance rates
for the three ML classifiers (89.29, 89.88 and 90.26) than the deep sparse model. Thus,
we can conclude that the deeper the AE architecture is, the better results are achieved,
showing the great potential of this sort of DL models to extract complex patterns from
high-dimensional data useful for classification purposes. On the other hand, if we focus
separately on the analysis of the predictive capacity of each of the three ML classifi-
cation algorithms, when using the features extracted by the AEs (Sparse, Deep Sparse
and Deep Sparse Denoising), SVM (88.08, 88.68 and 89.88) performs better than LR
(87.10, 88.31 and 89.29), whereas shallow ANN (88.21, 89.91 and 90.26) obtains bet-
ter results than SVM. Since the shallow ANN is a connectionist model, it takes more
advantage of the features extracted by the AEs—which are also feed-forward NNs—to
perform the final classification task.

However, when comparing the traditional ML pipeline with the TL approach, the
classical feature selection/extraction algorithms contribute to undoubtedly better perfor-
mance than the AE models do. In terms of ACC, ANOVA and Mutual Information fea-
ture selection, as well as PCA feature extraction, outperform any of the AE models, and
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Fig. 3: Box-plot describing the 10-fold CV ACC test values distribution obtained by
each combination of feature selection/extraction method and ML classification algo-
rithm.

only the Chi-Squared feature selection procedure is surpassed by our TL approach with
AEs. Among the traditional dimensionality reduction algorithms, ANOVA and Mutual
Information contribute to the best predictive performances of the ML classifiers, and
the highest average ACC (91.35) among all models is obtained when combining Mu-
tual Information with SVM classifier.

The TL approach proposed in this work aims to apply deep AE models in combina-
tion with ML classification algorithms to tackle the problem of breast tumor intrinsic-
subtypes classification using a scarce (845 samples) gene expression dataset. By pre-
training the model with a large collection of unlabeled samples—from 32 tumors differ-
ent from BRCA—and fine-tuning the resulting architecture using the reduced collection
of BRCA samples, the deep AEs are able to make use of the knowledge extracted from
data of other tumors to solve a particular cancer prediction task. However, the efficacy of
this strategy has been shown to be limited. Thus, in terms of accuracy, the ML classifiers
analyzed in this work achieve better predictive performance rates when they are pre-
ceded by classical dimensionality reduction algorithms as feature selection/extraction
methods, in contrast to slightly lower efficacy rates given by the AE models used with
this same purpose. This may be due to the fact that different types of cancer are actu-
ally different kinds of diseases, thus leveraging information from a large collection of
gene expression samples from a wide variety of tumors does not contribute to a great
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extent to solve a complex cancer prediction task such as the BRCA intrinsic-subtypes
classification.

4 Conclusions

In this paper, we have presented a TL approach that, in combination with diverse super-
vised ML algorithms, aims at tackling the problem of breast cancer intrinsic-subtype
classification. This approach makes use of deep AE models to propose a solution to
the adverse effects derived from the curse of dimensionality, that arises when dealing
with gene expression data. The Pan-Cancer dataset has been employed to pre-train three
different AE architectures on a heterogeneous dataset composed of thousands of gene
expression samples obtained from tenths of different cancer types. Once pre-trained in
a unsupervised manner, the resulting AEs have been fine-tuned in a supervised way by
using a reduced dataset composed of hundreds of breast tumor labeled samples. The
final purpose of this TL strategy was to reduce the dimensionality of the gene expres-
sion data by extracting valuable features to be subsequently used by ML classifiers to
predict BRCA intrinsic-subtypes. Finally, with the aim of assessing the effectiveness
of AE models as feature extraction mechanisms, we have analysed the contribution of
three different AE architectures to the performance of several ML classifiers, and com-
pared it to the efficacy achieved by these same ML models when preceded by four
different traditional feature selection/extraction algorithms in a classical ML pipeline.

The results of the analysis showed that, on the one hand, the deep AE architectures
extracted more useful features for classification purposes than the shallow AE model.
On the other hand, the features selected/extracted by the traditional methods, led the ML
classifiers to achieve slightly better predictive performance rates than the AE models.
Hence, leveraging information from many cancer types does not seems to contribute to
solve a more complex and specific cancer classification task such as prediction of breast
tumor intrinsic subtypes. This findings support the hypothesis stating that different types
of cancer are merely different types of diseases, all of them called cancer.

In future work, authors will continue to explore the adaptation of different DL ap-
proaches to be applied to the biomedical/bioinformatics domain, in particular to gene
expression data. Special attention will be paid to model interpretability, as though many
efforts have already been made in this particular field, most of DL models are still con-
sidered as “black-boxes”. In areas such as oncology, if these algorithms aim to become
a benchmark, interpretability must not be a lacking quality, but a main characteristic.
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