230 research outputs found

    Contribution to the marine biodiversity inventory: a checklist of the Amphipoda (Crustacea) of the Southern Ocean

    Get PDF
    A checklist, with synonymical bibliography, of all benthic, supralittoral and pelagic Amphipoda (Gammaridea, Caprellidea and Hyperiidea) occurring in the Southern Ocean is drawn up, mostly from taxonomical literature checked until 31 December 1992. 883 taxa have been recorded: 711 spp. and subspp. of Gammaridea, 28 spp. of Caprellidea, 69 spp. and subspp. of Hyperiidea as well as 75 unidentified spp. (73 Gammaridea, 2 Caprellidea). Distribution in the East or West Antarctic sub-regions, in the Subantarctic Islands sub-region, in the Magellanic sub-region and in the Tristan da Cunha district is mentioned. Bathyal and abyssal benthic occurrence is indicated as well as the general bathymetrical distribution of the pelagic species occurring south of 45°S. The Barnard & Barnard (1983) coded geographic system for reporting distribution of taxa is revised for the Southern Ocean and a new list of geographic codes of general application for Antarctic and Subantarctic benthos is provided. The benthic Amphipod fauna of the Southern Ocean comprises 702 species (85 % endemic) of which 451 are distributed in the Antarctic region (78.4% endemic) and 342 in the Subantarctic region (50.8 % endemic). Endemicity at the genus level attains 36.7 % for the whole Southern Ocean, 26.2% for the Antarctic and 13.5% for the Subantarctic region respectively

    MicroRNA-related sequence variations in human cancers

    Get PDF
    MicroRNAs are emerging as a most promising field in basic and translational research, explaining the pathogenesis of numerous human diseases and providing excellent tools for their management. This review considers the effects of microRNA sequence variations and their implication in pathogenesis and predisposition to human cancers. Although the role of microRNAs still remains to be elucidated, functional, and populational studies indicate that microRNA variants are important factors underlying the process of carcinogenesis. Further understanding of the cellular and molecular basis of microRNA action will lead to the identification of their new target genes and microRNA-regulated pathways. As a consequence, novel models of cancer pathogenesis can be proposed, and serve as a basis for elucidation of new prognostic and diagnostic tools for human cancers

    Are Amphipod invaders a threat to the regional biodiversity? Conservation prospects for the Loire River

    Get PDF
    The impact of invasions on local biodiversity is well established, but their impact on regional biodiversity has so far been only sketchily documented. To address this question, we studied the impact at various observation scales (ranging from the microhabitat to the whole catchment) of successive arrivals of non-native amphipods on the amphipod assemblage of the Loire River basin in France. Amphipod assemblages were studied at 225 sites covering the whole Loire catchment. Non-native species were dominant at all sites in the main channel of the Loire River, but native species were still present at most of the sites. We found that the invaders have failed to colonize most of tributaries of the Loire River. At the regional scale, we found that since the invaders first arrived 25 years ago, the global amphipod diversity has increased by 33% (from 8 to 12 species) due to the arrival of non-native species. We discuss the possibility that the lack of any loss of biodiversity may be directly linked to the presence of refuges at the microhabitat scale in the Loire channel and in the tributaries, which invasive species have been unable to colonize. The restoration of river quality could increase the number of refuges for native species, thus reducing the impact of invader

    A rare SNP in pre-miR-34a is associated with increased levels of miR-34a in pancreatic beta cells.

    Get PDF
    Open Access Article.Changes in the levels of specific microRNAs (miRNAs) can reduce glucose-stimulated insulin secretion and increase beta-cell apoptosis, two causes of islet dysfunction and progression to type 2 diabetes. Studies have shown that single nucleotide polymorphisms (SNPs) within miRNA genes can affect their expression. We sought to determine whether miRNAs, with a known role in beta-cell function, possess SNPs within the pre-miRNA structure which can affect their expression. Using published literature and dbSNP, we aimed to identify miRNAs with a role in beta-cell function that also possess SNPs within the region encoding its pre-miRNA. Following transfection of plasmids, encoding the pre-miRNA and each allele of the SNP, miRNA expression was measured. Two rare SNPs located within the pre-miRNA structure of two miRNA genes important to beta-cell function (miR-34a and miR-96) were identified. Transfection of INS-1 and MIN6 cells with plasmids encoding pre-miR-34a and the minor allele of rs72631823 resulted in significantly (p < 0.05) higher miR-34a expression, compared to cells transfected with plasmids encoding the corresponding major allele. Similarly, higher levels were also observed upon transfection of HeLa cells. Transfection of MIN6 cells with plasmids encoding pre-miR-96 and each allele of rs41274239 resulted in no significant differences in miR-96 expression. A rare SNP in pre-miR-34a is associated with increased levels of mature miR-34a. Given that small changes in miR-34a levels have been shown to cause increased levels of beta-cell apoptosis this finding may be of interest to studies looking at determining the effect of rare variants on type 2 diabetes susceptibility

    A Robust Approach to Identifying Tissue-Specific Gene Expression Regulatory Variants Using Personalized Human Induced Pluripotent Stem Cells

    Get PDF
    Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS) cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-derived human iPS cells

    Effects of Common Polymorphisms rs11614913 in miR-196a2 and rs2910164 in miR-146a on Cancer Susceptibility: A Meta-Analysis

    Get PDF
    BACKGROUND: MicroRNAs regulate gene expression at the post-transcriptional level and involved in diverse biological and pathological processes, including tumorigenesis. Rs11614913 in miR-196a2 and rs2910164 in miR-146a are shown to associate with increased/decreased cancer risk. We performed a meta-analysis to systematically summarize the possible association. METHODOLOGY/PRINCIPAL FINDINGS: We assessed published studies of the association between these microRNA polymorphisms and cancer risk from eleven studies with 16,771 subjects for miR-196a2 and from ten studies with 15,126 subjects for miR-146a. As for rs11614913, the contrast of homozygote (TT vs CC: OR = 0.92, 95% CI = 0.85-0.99, P(heterogeneity) = 0.45), allele (T vs C: OR = 0.96, 95% CI = 0.92-0.99, P(heterogeneity) = 0.61) and recessive model (OR = 0.90, 95% CI = 0.84-0.97, P(heterogeneity) = 0.50) produced statistically association. Subgroup analysis by ethnicity, statistically significantly decreased cancer risks were found among Asians for allele contrast (OR = 0.95, 95% CI = 0.90-0.99, P(heterogeneity) = 0.74) and the recessive genetic model (OR = 0.90, 95% CI = 0.82-0.98, P(heterogeneity) = 0.85). According to subgroup analysis by tumor types, the protective effect of C/T polymorphism was only found in breast cancer under allele contrast (T vs C: OR = 0.94, 95% CI = 0.88-0.99, P(heterogeneity) = 0.26). For rs2910164, no significant associations were found among overall analysis model with relatively large heterogeneity. Through the stratified analysis, heterogeneity decreased significantly. In the subgroup analyses by cancer types, the C allele of rs2910164 was associated with protection from digestive cancer in allele contrast (C vs G: OR = 0.86, 95% CI = 0.77-0.96, P(heterogeneity) = 0.51). CONCLUSIONS/SIGNIFICANCE: Our meta-analysis suggests that the rs11614913 most likely contributes to decreased susceptibility to cancer, especially in Asians and breast cancer. Besides, the C allele of the rs2910164 might be associated with a protection from digestive cancer

    Differential Expression Profile and Genetic Variants of MicroRNAs Sequences in Breast Cancer Patients

    Get PDF
    The technology available for cancer diagnosis and prognosis is not yet satisfactory at the molecular level, and requires further improvements. Micro RNAs (miRNAs) have been recently reported as useful biomarkers in diseases including cancer. We performed a miRNA expression profiling study using peripheral blood from breast cancer patients to detect and identify characteristic patterns. A total of 100 breast cancer patients and 89 healthy patients were recruited for miRNA genotyping and expression profiling. We found that hs-miR-196a2 in premenopausal patients, and hs-miR-499, hs-miR-146a and hs-miR-196a2 in postmenopausal patients, may discriminate breast cancer patients from healthy individuals. In addition, we found a significant association between two microRNA polymorphisms (hs-miR-196a2 and hs-miR-499) and breast cancer risk. However, no significant association between the hs-miR-146a gene and breast cancer risk was found. In summary, the study demonstrates that peripheral blood miRNAs and their expression and genotypic profiles can be developed as biomarkers for early diagnosis and prognosis of breast cancer

    The Fate of miRNA* Strand through Evolutionary Analysis: Implication for Degradation As Merely Carrier Strand or Potential Regulatory Molecule?

    Get PDF
    BACKGROUND: During typical microRNA (miRNA) biogenesis, one strand of a approximately 22 nt RNA duplex is preferentially selected for entry into a silencing complex, whereas the other strand, known as the passenger strand or miRNA* strand, is degraded. Recently, some miRNA* sequences were reported as guide miRNAs with abundant expression. Here, we intended to discover evolutionary implication of the fate of miRNA* strand by analyzing miRNA/miRNA* sequences across vertebrates. PRINCIPAL FINDINGS: Mature miRNAs based on gene families were well conserved especially for their seed sequences across vertebrates, while their passenger strands always showed various divergence patterns. The divergence mainly resulted from divergence of different animal species, homologous miRNA genes and multicopy miRNA hairpin precursors. Some miRNA* sequences were phylogenetically conserved in seed and anchor sequences similar to mature miRNAs, while others revealed high levels of nucleotide divergence despite some of their partners were highly conserved. Most of those miRNA precursors that could generate abundant miRNAs from both strands always were well conserved in sequences of miR-#-5p and miR-#-3p, especially for their seed sequences. CONCLUSIONS: The final fate of miRNA* strand, either degraded as merely carrier strand or expressed abundantly as potential functional guide miRNA, may be destined across evolution. Well-conserved miRNA* strands, particularly conservation in seed sequences, maybe afford potential opportunities for contributing to regulation network. The study will broaden our understanding of potential functional miRNA* species

    Polymorphisms in the ADRB2 gene and Graves disease: a case-control study and a meta-analysis of available evidence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The beta-2-Adrenergic receptor (<it>ADRB2</it>) gene on chromosome 5q33.1 is an important immunoregulatory factor. We and others have previously implicated chromosomal region 5q31-33 for contribution to the genetic susceptibility to Graves disease (GD) in East-Asian populations. Two recent studies showed associations between the single nucleotide polymorphism (SNP) rs1042714 in the <it>ADRB2 </it>gene and GD. In this study, we aimed to fully investigate whether the <it>ADRB2 </it>gene conferred susceptibility to GD in Chinese population, and to perform a meta-analysis of association between <it>ADRB2 </it>and GD.</p> <p>Methods</p> <p>Approximately 1 kb upstream the transcription start site and the entire coding regions of the <it>ADRB2 </it>gene were resequenced in 48 Han Chinese individuals to determine the linkage disequilibrium (LD) patterns. Tag SNPs were selected and genotyped in a case-control collection of 1,118 South Han Chinese subjects, which included 428 GD patients and 690 control subjects. A meta-analysis was performed with the data obtained in the present samples and those available from prior studies.</p> <p>Results</p> <p>Fifteen SNPs in the <it>ADRB2 </it>gene were identified by resequencing and one SNP was novel. Ten tag SNPs were investigated further to assess association of <it>ADRB2 </it>in the case-control collection. Neither individual tag SNP nor haplotypes showed association with GD in Han Chinese population (P > 0.05). Our meta-analysis of the <it>ADRB2 </it>SNP rs1042714 measured heterogeneity between the ethnic groups (I<sup>2 </sup>= 53.1%) and no association to GD was observed in the overall three studies with a random effects model (OR = 1.13, 95% CI, 0.95 to 1.36; P = 0.18). However, significant association was found from the combined data of Caucasian population with a fixed effects model (OR = 1.18, 95% CI, 1.06 to 1.32; P = 0.002; I<sup>2 </sup>= 5.9%).</p> <p>Conclusion</p> <p>Our study indicated that the <it>ADRB2 </it>gene did not exert a substantial influence on GD susceptibility in Han Chinese population, but contributed to a detectable GD risk in Caucasian population. This inconsistency resulted largely from between-ethnicity heterogeneity.</p
    corecore