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numerous human cancers. Deregulation of gene expression 
observed in malignancies can nowadays be explained by 
the action of short, endogenous non-coding RNas–micro-
RNas. The cellular “microcosm” is emerging as a most 
promising field in translational research, providing excel-
lent diagnostic, prognostic and therapeutic tools for the 
management of human diseases.

MicroRNas are encoded all over the human genome—
in intergenic regions as well as within introns or exons of 
protein-coding genes (Rodriguez et al. 2004). Primary 
miRNa transcripts are processed to produce miRNa pre-
cursors (pre-miRNas) that fold into specific secondary 
structures of hairpins. Pre-miRNas are further cleaved, and 
mature microRNas are produced from one or both arms 
of the hairpin. The produced miRs are referred to as miR-
5p and miR-3p, depending on the arm from which they 
are cleaved (Bartel 2009). In animals, miRNas act mainly 
through annealing to 3′ untranslated regions (3′UTRs) of 
gene transcripts, leading to inhibition of further steps of 
gene expression. This interaction depends on watson–Crick 
complementarity between the target 3′UTR sequence and 
the “seed” region, located between the second and eighth 
nucleotide of the mature miRNa (Friedman et al. 2009; 
Grimson et al. 2007). It is believed that microRNas regu-
late the expression of approximately 50 % of human genes 
(Krol et al. 2010).

To date, there are 1,872 precursors and 2,578 mature 
miRNas annotated and described in humans (miRbase 
release 20) (Griffiths-Jones et al. 2008; Kozomara and Grif-
fiths-Jones 2011). according to a recent analysis, the pre-
microRNa regions include 1,940 SNPs. Moreover, 414,510 
other human SNPs might potentially influence miR:mRNa 
interactions, causing either loss or creation of a miRNa-
binding site (Liu et al. 2012). Considering the prevalence of 
microRNa-mediated gene regulation, sequence variations 
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in miRs can significantly contribute to changes in impor-
tant cellular pathways and thus underlie diseases. Genetic 
variations in microRNa sequences are unique as they can 
influence both the expression levels and functionality of a 
miRNa. a SNP located in the crucial “seed” sequence of a 
miR affects its complementarity with target genes and leads 
to deregulation of multiple cellular pathways. Moreover, 
since the expression of miRs is highly tissue and disease-
specific, changes within the miRNa sequence can indeed 
specifically predispose to cancers of particular organs and 
mediate different molecular changes in different tissues (de 
la Chapelle and Jazdzewski 2011).

The first microRNas whose aberrations were linked 
to the pathogenesis of cancer were miR-15a and miR-
16-1, lost in the majority of B cell chronic lymphocytic 
leukemia (CLL) patients due to the deletion of chromo-
some 13q14 (Calin et al. 2002). Later studies revealed an 
alternative mechanism leading to severe downregulation 
of the miRs in a few cases of CLL, namely, a germline 
C → T substitution downstream of the miR-16-1 hairpin 
(Calin et al. 2005). The explanation of the downregulation 
was unknown till recently, when auyeung et al. (2013) 
showed that specific sequence determinants, including 
a recognition site for the splicing factor SRp20 located 
downstream of most pri-miRNa hairpins, are required 
for efficient processing and maturation of microRNas in 
human cells. The deleterious mutation lowers the expres-
sion of miR-16-1 and leads to CLL through the disruption 
of SRp20 binding site.

SNPs in microRNA genes

The first reports on variations in microRNa sequences 
were published more than 10 years after the discovery of 
microRNas and were first proposed to have no effect on 
the functionality of miRs (Iwai and Naraba 2005; Saunders 
et al. 2007). Naturally occurring sequence variation in a 
miRNa precursor that resulted in reduced processing, low-
ered levels, and disrupted function of a mature miRNa was 
first reported for a viral miR-K5 (Gottwein et al. 2006) and, 
subsequently, for human miR-125a (Duan et al. 2007) and 
miR-146a (Jazdzewski et al. 2008).

all these studies proved that a single nucleotide poly-
morphism that leads to disruption of base pairing in the 
hairpin stem, results in a dramatically impaired process-
ing and downregulation of the mature microRNa. The 
rs12975333 in miR-125a results in a G → T change at the 
eighth nucleotide of the mature miR and severely reduces 
its production (Duan et al. 2007). The polymorphism was 
shown to be associated with a significantly increased risk 
for breast cancer in antwerp (Li et al. 2009). It was pro-
posed that lowered levels of the mature miR-125a lead to 

overexpression of its target gene, HeR2, whose increased 
levels are implicated in numerous breast cancer cases 
(Lehmann et al. 2013). Interestingly, a large multi-center 
study performed in Germany, Italy, austria, and Spain did 
not identify any carriers of the rare rs12975333 allele to 
confirm these results (Peterlongo et al. 2011).

The rs2910164 G → C variant in miR-146a is a sin-
gle nucleotide polymorphism whose deleterious function 
is mediated by two mechanisms: by impaired processing 
and downregulation of mature microRNa levels result-
ing in a diminished regulatory impact on target genes 
(Jazdzewski et al. 2008), and by creation of a new vari-
ant of the mature microRNa (Jazdzewski et al. 2009). 
Mature miRs are produced from both the 5p and 3p arms 
of the precursor mir-146a. The SNP is located in the seed 
region of miR-146a-3p, generating 2 isoforms that regu-
late distinct sets of target genes. Thus, homozygous car-
riers of GG or CC alleles produce 2 mature molecules 
(miR-146a-5p from the leading strand, and miR-146a-
3p(G) or 146a-3p(C), respectively, from the passenger 
strand), whereas GC heterozygotes produce 3 mature 
miRs: miR-146a-5p and both miR-146a-3p(G) and 
miR-146a-3p(C).

Importantly, 4.7 % of thyroid tumors exhibited a somatic 
mutation in the SNP sequence that probably arose as a step 
in the clonal selection during carcinogenesis (Jazdzewski 
et al. 2008). Strikingly, all the identified somatic mutations 
occurred toward heterozygosity. The authors suggested that 
thyroid cells heterozygous at miR-146a presented higher 
activity of NF-kappaB and a lowered potential of inhibition 
of this pathway; therefore were more likely to survive after 
ionizing radiation, a known risk factor for thyroid cancer 
(Jazdzewski and de la Chapelle 2009).

The rs2910164 in miR-146a was shown to significantly 
predispose to papillary thyroid carcinoma (Jazdzewski 
et al. 2008), hepatocellular carcinoma (HCC) in males 
(Xu et al. 2008), prostate cancer (Xu et al. 2010), blad-
der cancer (wang et al. 2012), and colorectal cancer (Ma 
et al. 2013), although not in all studied populations (Jones 
et al. 2012). It was also suggested that rs2910164 can sig-
nificantly contribute to the pathogenesis of breast cancer, as 
the target genes of miR-146a include BRCA1 and BRCA2, 
which are key breast and ovarian cancer genes. Breast can-
cer patients who had at least one miR-146a-variant allele 
were diagnosed at an earlier age than the patients with no 
variant alleles (Shen et al. 2008).

To what extent sequence variations in microRNa 
genes are associated with tumorigenesis became a mat-
ter of intensive investigation. Rs11614913 (C → T) in 
a precursor of miR-196a2 was shown to impact the risk 
of non-small cell lung cancer (Hu et al. 2008; Tian et al. 
2009; Yuan et al. 2013), esophageal cancer (Ye et al. 2008), 
breast cancer (Hoffman et al. 2009; Hu et al. 2009), HCC, 
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and liver cirrhosis (Li et al. 2010; Qi et al. 2010), as well 
as the overall survival of patients with advanced gastric 
cancer (Stenholm et al. 2013). This effect was explained 
by the fact that that presence of the rare T allele severely 
lowers synthesis of both miRs expressed from the precursor 
and leads to altered gene recognition by the variant miR-
196a2-3p (Hoffman et al. 2009; Hu et al. 2008). Since the 
target genes for miR-196a include mediators of apoptosis 
and Hox genes, its aberrant expression can lead to severe 
changes in cellular pathways and initiate the process of 
tumorigenesis (Hornstein et al. 2005; Luthra et al. 2008).

another polymorphism impairing the maturation of 
a miRNa and leading to inhibition of its function was 
rs895819 (a → G) within miR-27a. The SNP has been 
proved to modify the risk for breast cancer in some popula-
tions (Kontorovich et al. 2010; Yang et al. 2010), but the 
effect was not observed in others (Catucci et al. 2012). The 
overall protective role associated with the rs895819 hete-
rozygous state was proven for Caucasians in a recent meta-
analysis (wang et al. 2013). However, in advanced gastric 
cancer the SNP was associated with worse overall survival 
(Stenholm et al. 2013).

although information on germline polymorphisms in 
microRNas is growing, the occurrence of somatic muta-
tions is generally much less well understood and less com-
monly identified. Research in this area was for a long time 
not a focus of interest and data are still lacking. It seems, 
however, that information on miRNa-related somatic muta-
tions will soon be expanded. a recently published database, 
SomamiR, lists 26 somatic mutations that potentially affect 
the functioning of microRNas in various diseases (Bhat-
tacharya et al. 2013).

SNPs in microRNa target sites

Polymorphism in a 3′UTR of a gene may create as well as 
destroy a miRNa-binding site and thus play a role similar 
to a SNP located within a miRNa seed region. The impor-
tance of the miRNa:mRNa interactions for the proper 
functioning of a cell was highlighted by a study demon-
strating a significantly lower frequency of SNPs in the 
miRNa-binding sites than in the entire 3′UTRs of genes 
(density 0.182 vs. 0.213 SNP/kilobase). These data indi-
cate that such SNPs are presumably negatively selected 
under evolutional pressure (Yu et al. 2007). In conse-
quence, the study underlined the role of miRNa distur-
bances in the pathogenesis of human diseases and, indeed, 
identified a number of SNPs with an aberrant allele fre-
quency in human cancers. a recent release of miRdSNP, 
a database of disease-associated SNPs and microRNa-tar-
get sites located in 3′UTRs of human genes, includes 630 
unique dSNPs and 786 SNP-disease associations (Bruno 
et al. 2012).

Studies have revealed the role of polymorphisms in 
microRNa recognition sites in the predisposition to par-
ticular malignancies, and by these means provided an addi-
tional proof of the implication of miRNa aberrations in the 
pathogenesis of cancers. a good example of a functional 
SNP located in a binding site for miRNa is rs61764370 
(G → T) within the 3′UTR of KRAS. Presence of the SNP 
interferes with let-7 binding, weakens the inhibition of 
KRaS expression and leads to over-activation of the Raf, 
PI3K, and growth factor signaling pathways. Rs61764370 
was associated with an increased risk for non-small cell 
lung cancer (Chin et al. 2008), and reduced survival in 
patients with oral cancer (Christensen et al. 2009). The 
rare rs61764370 variant was also shown to modulate the 
response to cetuximab, an epidermal growth factor receptor 
inhibitor, in metastatic colorectal cancer patients (Zhang 
et al. 2011).

another miRNa-related SNP that was shown to alter 
the response to therapies was the 829C → T SNP in DHFR 
gene, located within the binding site for miR-24. Dihydro-
folate reductase is a target of methotrexate, an important 
antimetabolite and antifolate agent used in the treatment of 
malignancies including acute lymphocytic leukemia, non-
Hodgkin’s lymphoma, osteosarcoma, or choriocarcinoma. 
Overexpression of DHFR caused by the loss of miR-24 
binding results in resistance to methotrexate (Mishra et al. 
2007).

MicroRNa length heterogeneity

another intriguing subject related to the changes in miR 
sequences and the resulting alterations in their functioning 
is microRNa length heterogeneity. when next-generation 
sequencing was applied to microRNa analysis it became 
clear that an individual miRNa gene may give rise not only 
to the 5p and 3p mature miRNas, but also to several addi-
tional miRNas of varying length, named isomiRs (Kuchen-
bauer et al. 2008; Landgraf et al. 2007). Importantly, 
sequence variations of many of the isomiRs consist of the 
addition or deletion of nucleotides at their 5′end when 
compared to the reference miRNa deposited in miRbase. 
This results in a change of the miR’s seed region and, in 
consequence, leads to recognition and regulation of distinct 
sets of target genes. Thus, the effect of microRNa length 
variation can be similar to the effect mediated by micro-
RNa polymorphisms (Fig. 1).

The “templated” isomiRs originate from imperfect 
specificity of both Drosha and Dicer cleavage of micro-
RNa precursors, mainly due to asymmetrical structural 
motifs present in precursor hairpins (Neilsen et al. 2012; 
Starega-Roslan et al. 2011). MicroRNas can also be 
trimmed by exonucleases, or extended, mainly at their 
3′ends, through the addition of ribonucleotides catalyzed 
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by nucleotidyl transferases (Chiang et al. 2010; Cloonan 
et al. 2012; Kim 2005; Kuchenbauer et al. 2008; Landgraf 
et al. 2007; Lee et al. 2010; Swierniak et al. 2013). IsomiRs 

are tissue-specific and functionally active cooperative part-
ners of canonical miRNas (Cloonan et al. 2012). although 
the role of isomiRs in the pathogenesis of cancers requires 

Fig. 1  SNPs and length vari-
ations of microRNas can alter 
the processing of a mature miR 
or directly change the seed 
region resulting in isoforms that 
regulate distinct target genes 
when compared to their canoni-
cal counterparts

Fig. 2  Functional pathways of pre-miR-146b. Pre-miR-146b pro-
duces several isoforms of two canonical miRNas (miR-146b-5p and 
miR-146b-3p). The isomiRs have four alternative seeds sequences, 
potentially binding unique sets of target genes. Shared target genes 

cooperatively regulate two important pathways implicated in tumor-
igenesis—wnt and mTOR. RPM-reads per million in papillary thy-
roid carcinoma samples (mean count) (modified from Swierniak et al. 
2013)
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more studies, deregulation of isomiRs was already shown 
in a murine model of leukemia (Kuchenbauer et al. 2008) 
as well as in melanoma (Kozubek et al. 2013) and papil-
lary thyroid carcinoma (Swierniak et al. 2013). Interest-
ingly, all these studies showed that the most abundant 
mature sequence of most miRNas differs from the canoni-
cal, reference sequence deposited in miRBase. In bone 
marrow cell lines, 336 identified miRNas were expressed 
in 3,390 isoforms and the number of different isomiRs 
for a given miRNa ranged from 1 to 74 (Kuchenbauer 
et al. 2008). another study identified isomiRs that exhib-
ited different expression levels between primary cutane-
ous melanoma and metastatic melanoma (Kozubek et al. 
2013). a recent study identified 427 reference microRNas 
expressed in the thyroid gland, while the number of signifi-
cantly expressed isomiRs reached 1749 (Swierniak et al. 
2013). Many of the identified isomiRs were deregulated in 
cancer when compared to control tissue. One of the most 
striking examples of deregulated miRs were the products 
of the mir-146b precursor. Mir-146b is processed to two 
mature microRNas: miR-146b-3p and miR-146b-5p. In 
thyroid tissue, these microRNas are expressed altogether 
in 10 isoforms, and their expression in tumor samples was 
14.4–39 times higher than in control tissue. In both cases, 
the reference sequences were not the dominant ones (Swi-
erniak et al. 2013). The isoforms of both mature miRs vary 
at their 5′ends with a 1nt-difference, creating 2 alternative 
seeds each. In silico target prediction revealed that each 
seed binds a unique set of target genes, and only 13.1 and 
9.4 % of the target genes are regulated by the two highly 
expressed seeds of miR-146b-5p and miR-146b-3p, respec-
tively (Fig. 2). The target genes shared by different isomiRs 
seem to be of particular interest, because their regulation 
is independent from the biases of Dicer activity. Moreo-
ver, the high number of isoforms increases their regulatory 
effect. The analysis of target genes concertedly regulated 
by both alternative seeds of miR-146b-5p and miR-146b-3p 
showed an overrepresentation of two pathways involved in 
tumorigenesis, namely wnt-signaling pathway (Odds ratio 
6.75, FDR 0.015), and mTOR-signaling pathway (Odds 
ratio 10.03, FDR 0.35), respectively (Swierniak et al. 2013, 
and unpublished data, Fig. 2).

although microRNa research is a relatively young sub-
ject, a significant number of studies show the importance of 
microRNa-related sequence variations in the pathogenesis 
and susceptibility to particular malignancies. It is worth 
mentioning that the coordinate action of microRNa expres-
sion and sequence variations can differentially predispose 
to diseases in different populations, and can play divergent 
roles in different tissue types. as the number of identified 
miRs and polymorphisms are growing, this area will be 
constantly expanded and bring new insight into the role of 
miRs in human cancers.
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