227 research outputs found

    Theoretical study of the ionospheric G factor

    Get PDF
    A derivation from kinetic theory of the energy balance equation used in wave interaction work is reviewed. Then G is defined and two models for G are presented: one, a model based on Gerjuoy-Stein cross sections for both O2 and N2; the other based on a more recent model for O2 cross sections. The two models differ considerably in their temperature dependence. The limits of applicability of the useful energy balance equation (hence of the concept of G) are discussed and it is found that no difficulty arises unless the transmitter power is more than 1000 times that now employed at the present operating frequency

    Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse

    Get PDF
    A free electron can temporarily gain a very significant amount of energy if it is overrun by an intense electromagnetic wave. In principle, this process would permit large enhancements in the center-of-mass energy of electron-electron, electron-positron and electron-photon interactions if these take place in the presence of an intense laser beam. Practical considerations severely limit the utility of this concept for contemporary lasers incident on relativistic electrons. A more accessible laboratory phenomenon is electron-positron production via an intense laser beam incident on a gas. Intense electromagnetic pulses of astrophysical origin can lead to very energetic photons via bremsstrahlung of temporarily accelerated electrons

    Organ Dysfunction in Children With Blood Culture-Proven Sepsis: Comparative Performance of Four Scores in a National Cohort Study.

    Get PDF
    OBJECTIVES Previous studies applying Sepsis-3 criteria to children were based on retrospective analyses of PICU cohorts. We aimed to compare organ dysfunction criteria in children with blood culture-proven sepsis, including emergency department, PICU, and ward patients, and to assess relevance of organ dysfunctions for mortality prediction. DESIGN We have carried out a nonprespecified, secondary analysis of a prospective dataset collected from September 2011 to December 2015. SETTING Emergency departments, wards, and PICUs in 10 tertiary children's hospitals in Switzerland. PATIENTS Children younger than 17 years old with blood culture-proven sepsis. We excluded preterm infants and term infants younger than 7 days old. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We compared the 2005 International Pediatric Sepsis Consensus Conference (IPSCC), Pediatric Logistic Organ Dysfunction-2 (PELOD-2), pediatric Sequential Organ Failure Assessment (pSOFA), and Pediatric Organ Dysfunction Information Update Mandate (PODIUM) scores, measured at blood culture sampling, to predict 30-day mortality. We analyzed 877 sepsis episodes in 807 children, with a 30-day mortality of 4.3%. Percentage with organ dysfunction ranged from 32.7% (IPSCC) to 55.3% (pSOFA). In adjusted analyses, the accuracy for identification of 30-day mortality was area under the curve (AUC) 0.87 (95% CI, 0.82-0.92) for IPSCC, 0.83 (0.76-0.89) for PELOD-2, 0.85 (0.78-0.92) for pSOFA, and 0.85 (0.78-0.91) for PODIUM. When restricting scores to neurologic, respiratory, and cardiovascular dysfunction, the adjusted AUC was 0.89 (0.84-0.94) for IPSCC, 0.85 (0.79-0.91) for PELOD-2, 0.87 (0.81-0.93) for pSOFA, and 0.88 (0.83-0.93) for PODIUM. CONCLUSIONS IPSCC, PELOD-2, pSOFA, and PODIUM performed similarly to predict 30-day mortality. Simplified scores restricted to neurologic, respiratory, and cardiovascular dysfunction yielded comparable performance

    Organ Dysfunction in Children With Blood Culture-Proven Sepsis: Comparative Performance of Four Scores in a National Cohort Study

    Get PDF
    Objectives: Previous studies applying Sepsis-3 criteria to children were based on retrospective analyses of PICU cohorts. We aimed to compare organ dysfunction criteria in children with blood culture-proven sepsis, including emergency department, PICU, and ward patients, and to assess relevance of organ dysfunctions for mortality prediction. Design: We have carried out a nonprespecified, secondary analysis of a prospective dataset collected from September 2011 to December 2015. Setting: Emergency departments, wards, and PICUs in 10 tertiary children's hospitals in Switzerland. Patients: Children younger than 17 years old with blood culture-proven sepsis. We excluded preterm infants and term infants younger than 7 days old. Interventions: None. Measurements and main results: We compared the 2005 International Pediatric Sepsis Consensus Conference (IPSCC), Pediatric Logistic Organ Dysfunction-2 (PELOD-2), pediatric Sequential Organ Failure Assessment (pSOFA), and Pediatric Organ Dysfunction Information Update Mandate (PODIUM) scores, measured at blood culture sampling, to predict 30-day mortality. We analyzed 877 sepsis episodes in 807 children, with a 30-day mortality of 4.3%. Percentage with organ dysfunction ranged from 32.7% (IPSCC) to 55.3% (pSOFA). In adjusted analyses, the accuracy for identification of 30-day mortality was area under the curve (AUC) 0.87 (95% CI, 0.82-0.92) for IPSCC, 0.83 (0.76-0.89) for PELOD-2, 0.85 (0.78-0.92) for pSOFA, and 0.85 (0.78-0.91) for PODIUM. When restricting scores to neurologic, respiratory, and cardiovascular dysfunction, the adjusted AUC was 0.89 (0.84-0.94) for IPSCC, 0.85 (0.79-0.91) for PELOD-2, 0.87 (0.81-0.93) for pSOFA, and 0.88 (0.83-0.93) for PODIUM. Conclusions: IPSCC, PELOD-2, pSOFA, and PODIUM performed similarly to predict 30-day mortality. Simplified scores restricted to neurologic, respiratory, and cardiovascular dysfunction yielded comparable performance

    Differential Effects of Pravastatin and Simvastatin on the Growth of Tumor Cells from Different Organ Sites

    Get PDF
    3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, commonly known as statins, may possess cancer preventive and therapeutic properties. Statins are effective suppressors of cholesterol synthesis with a well-established risk-benefit ratio in cardiovascular disease prevention. Mechanistically, targeting HMGCR activity primarily influences cholesterol biosynthesis and prenylation of signaling proteins. Pravastatin is a hydrophilic statin that is selectively taken up by a sodium-independent organic anion transporter protein-1B1 (OATP1B1) exclusively expressed in liver. Simvastatin is a hydrophobic statin that enters cells by other mechanisms. Poorly-differentiated and well-differentiated cancer cell lines were selected from various tissues and examined for their response to these two statins. Simvastatin inhibited the growth of most tumor cell lines more effectively than pravastatin in a dose dependent manner. Poorly-differentiated cancer cells were generally more responsive to simvastatin than well-differentiated cancer cells, and the levels of HMGCR expression did not consistently correlate with response to statin treatment. Pravastatin had a significant effect on normal hepatocytes due to facilitated uptake and a lesser effect on prostate PC3 and colon Caco-2 cancer cells since the OATP1B1 mRNA and protein were only found in the normal liver and hepatocytes. The inhibition of cell growth was accompanied by distinct alterations in mitochondrial networks and dramatic changes in cellular morphology related to cofilin regulation and loss of p-caveolin. Both statins, hydrophilic pravastatin and hypdrophobic simvastatin caused redistribution of OATP1B1 and HMGCR to perinuclear sites. In conclusion, the specific chemical properties of different classes of statins dictate mechanistic properties which may be relevant when evaluating biological responses to statins

    Expression of OATP Family Members in Hormone-Related Cancers: Potential Markers of Progression

    Get PDF
    The organic anion transporting polypeptide (OATP) family of transporters has been implicated in prostate cancer disease progression probably by transporting hormones or drugs. In this study, we aimed to elucidate the expression, frequency, and relevance of OATPs as a biomarker in hormone-dependent cancers. We completed a study examining SLCO1B3, SLCO1B1 and SLCO2B1 mRNA expression in 381 primary, independent patient samples representing 21 cancers and normal tissues. From a separate cohort, protein expression of OATP1B3 was examined in prostate, colon, and bladder tissue. Based on expression frequency, SLCO2B1 was lower in liver cancer (P = 0.04) which also trended lower with decreasing differentiation (P = 0.004) and lower magnitude in pancreatic cancer (P = 0.05). SLCO2B1 also had a higher frequency in thyroid cancer (67%) than normal (0%) and expression increased with stage (P = 0.04). SLCO1B3 was expressed in 52% of cancerous prostate samples and increased SLCO1B3 expression trended with higher Gleason score (P = 0.03). SLCO1B3 expression was also higher in testicular cancer (P = 0.02). SLCO1B1 expression was lower in liver cancer (P = 0.04) which trended lower with liver cancer grade (P = 0.0004) and higher with colon cancer grade (P = 0.05). Protein expression of OATP1B3 was examined in normal and cancerous prostate, colon, and bladder tissue samples from an independent cohort. The results were similar to the transcription data, but showed distinct localization. OATPs correlate to differentiation in certain hormone-dependent cancers, thus may be useful as biomarkers for assessing clinical treatment and stage of disease

    Effect of Stalling after Mismatches on the Error Catastrophe in Nonenzymatic Nucleic Acid Replication

    Get PDF
    The frequency of errors during genome replication limits the amount of functionally important information that can be passed on from generation to generation. During the origin of life, mutation rates are thought to have been quite high, raising a classic chicken-and-egg paradox: could nonenzymatic replication propagate sequences accurately enough to allow for the emergence of heritable function? Here we show that the theoretical limit on genomic information content may increase substantially as a consequence of dramatically slowed polymerization after mismatches. As a result of postmismatch stalling, accurate copies of a template tend to be completed more rapidly than mutant copies and the accurate copies can therefore begin a second round of replication more quickly. To quantify this effect, we characterized an experimental model of nonenzymatic, template-directed nucleic acid polymerization. We found that most mismatches decrease the rate of primer extension by more than 2 orders of magnitude relative to a matched (Watson-Crick) control. A chemical replication system with this property would be able to propagate sequences long enough to have function. Our study suggests that the emergence of functional sequences during the origin of life would be possible even in the face of the high intrinsic error rates of chemical replication

    The Concise Guide to PHARMACOLOGY 2023/24: Transporters

    Get PDF
    \ua9 2023 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16182. Transporters are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Effects of steroids and angiotensin converting enzyme inhibition on circumferential strain in boys with Duchenne muscular dystrophy: a cross-sectional and longitudinal study utilizing cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroid use has prolonged ambulation in Duchenne muscular dystrophy (DMD) and combined with advances in respiratory care overall management has improved such that cardiac manifestations have become the major cause of death. Unfortunately, there is no consensus for DMD-associated cardiac disease management. Our purpose was to assess effects of steroid use alone or in combination with angiotensin converting enzyme inhibitors (ACEI) or angiotension receptor blocker (ARB) on cardiovascular magnetic resonance (CMR) derived circumferential strain (ε<sub>cc</sub>).</p> <p>Methods</p> <p>We used CMR to assess effects of corticosteroids alone (Group A) or in combination with ACEI or ARB (Group B) on heart rate (HR), left ventricular ejection fraction (LVEF), mass (LVM), end diastolic volume (LVEDV) and circumferential strain (ε<sub>cc</sub>) in a cohort of 171 DMD patients >5 years of age. Treatment decisions were made independently by physicians at both our institution and referral centers and not based on CMR results.</p> <p>Results</p> <p>Patients in Group A (114 studies) were younger than those in Group B (92 studies)(10 ± 2.4 vs. 12.4 ± 3.2 years, p < 0.0001), but HR, LVEF, LVEDV and LVM were not different. Although ε<sub>cc </sub>magnitude was lower in Group B than Group A (-13.8 ± 1.9 vs. -12.8 ± 2.0, p = 0.0004), age correction using covariance analysis eliminated this effect. In a subset of patients who underwent serial CMR exams with an inter-study time of ~15 months, ε<sub>cc </sub>worsened regardless of treatment group.</p> <p>Conclusions</p> <p>These results support the need for prospective clinical trials to identify more effective treatment regimens for DMD associated cardiac disease.</p
    corecore