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ABSTRACT

A derivation from kinetic theory of the energy balance equation

used in wave interaction work is reviewed. G is. then defined and two

models for G are presented: one, a model based on Gerjuoy-Stein cross

sections for both O_ and N?; the other based on a more recent model for

O? cross sections. The two models differ considerably in their temperature

dependence. The limits of applicability of the usual energy balance

equation (hence of the concept of G) are discussed and it is found that no

difficulty arises unless the transmitter power is more than 100. times

that now employed at the present operating frequency.
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•. . CHAPTER I

INTRODUCTION

A. Importance of G in Wave Interaction

Cross modulation experiments have become an important technique

for determining the parameters of the D-region (such as electron density

and collision frequency) [Lee and Ferraro (1969)]. There occurs in the

theory of these wave interaction experiments the so-called ionospheric.::

G-£actor [Ratcliffe and Shaw (1948)]. G has traditionally represented the

fraction of excess energy (in excess of the thermal energy of the neutral

•background)1. -lost by an electron on the average in a collision with neutral

-molecules during and immediately after the passage of a heating pulse

of radio frequency power through the D-region. G is" defined in the

assumed form of the thermal energy balance equation [Ratcliffe and

Shaw (1948)]

- . . = - G v ( U - U ^ ) + S 1 . 1

where U is the electron thermal energy, U_ is the neutral background
• &

thermal energy, S is the thermal energy input rate from the radio wave,

and v is a collision frequency. A historical review of the development

of wave interaction theory and the role that G plays in it is found in

Miller (1964).

It is seen in Miller (1964) that the knowledge of G is critical to

the reduction and interpretation of wave interaction data. The quantity
• . '.!

Gv is essentially the inverse of the relaxation time of the electron

thermal energy. It therefore must be known to determine the electron

temperature during relaxation and during the passage of the low power
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wanted wave. The electron temperature determines the electron

collision frequency^arid therefore, the amount of interaction.

The model used in present interaction experiments for G is simply

a constant [Kissick (1970)]. It is assumed to be sufficiently accurate to

consider G constant because the maximum amount of interaction is

supposed to take place in, a rather narrow height range, over which

conditions are thought to be rather uniform. The constant value is

determined by a type of wave interaction experiment [Kissick (1970)].

B. Purpose of this Work

An up to date model for G is desirable in wave interaction work.

There has been an observed apparent seasonal variation of G correlated

with seasonal temperature variation [Kissick (1970)]. This is not

consistent with the model discussed above and is also not consistent with

a more accurate model [Mentzoni and Row (1963)] that will be discussed

later. This work will review the role that various ionospheric parameters

play in a G model and will present two models which are consistent with

the latest laboratory measurements to determine whether the observed

apparent temperature correlation can be explained by an accurate G

model. As a result of this work, incorporation of up to date G models

in wave interaction will determine whether more precise models

significantly affect data reduction results.

The energy relaxation equation is always assumed to be of the

form 1. 1. Conditions under which this assumption is justified will be

discussed. On the basis of this it is possible to determine practical

operating frequency and power ranges in which 1. 1 is applicable.
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C. Methods Used . .

A review-of a derivation of the generalization of 1. 1 using an

appropriate kinetic" equation will .be presented following closely the

development in Skharofsky, Johnston and Bachynski (1966). This .

involves first a spherical harmonic perturbation expansion of the

distribution function. The expansion results in a coupled pair of .

equations involving the spherically symmetric part and a drift part of.

the distribution function. An asymptotic expansion of these equations will

be used to separate the different time scales that are present and to

average over the fast time. A resulting equation; describing the slow

time development of the spherically, symmetric part of the distribution

function will be averaged over all velocities with respect to kinetic energy

to obtain an energy balance equation. Solutions for the spherically

symmetric distribution function*will be obtained in the steady, state for

two collision models and used to evaluate terms in the energy balance

equation.

D. Results

Two possible models .for G are obtained based on the latest

available theory and experiment on cross sections for N? and O~. Any

later cross section information could;be easily:used' to'..produce a more

accurate model for G. These two models can easily be included.in

wave interaction theory to determine the sensitivity of data reduction

results on the G model.

It is concluded that the temperature dependence of G is

critically dependent on what the correct cross section model for O2 is.

However, neither of the presently considered models explains the

apparent correlation:between G and temperature that results from wave
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interaction studies.

It is also concluded that, at the presently used operating

frequency for the disturbing, or high power signal, the energy balance

equation is, in fact, of the form always assumed unless the power is

greater than about two orders of magnitude above that now employed.

Only at a lower altitude, or lower operating frequency, or much higher

power is the energy balance equation altered from.the form commonly,

assumed. • • .
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CHAFTER IT

DERIVATION OF LOWEST ORDER DISTRIBUTION
FUNCTION EQUATION

In this chapter will be discussed the proceduredidr,::obtairiiiig>;

an equation that describes the time relaxation of the spherically symmetric

part of the electron distribution. The development is a review of a

rather complete analysis in Skharofsky, etl ;al. (1966) (designated by

PKP) and an application specifically to rotation inelastic collisions

between ambient electrons and neutral molecules such as O~ and N^.

The elimination of the short time scales is discussed.

A. Fundamental Assumptions and the Applicable Kinetic Equation

The first assumption made is that the plasma is of sufficiently

low density compared with the neutral background, that the only collisions

of importance are binary collisions between electrons and neutrals.

This is certainly justified in the D-region. Electron-electron and

electron-ion collisions can be included by a Fokker -Planck approach.

This would be necessary in the F -region. Because of the low density

assumption and because of the smallness of the electron mass, it can

also be assumed that the neutral particle distributions are not affected

by perturbations in the electron distribution.

The kinetic equation that applies in this situation. is the Boltzman

equation

Vuf =

_ ». g _pv

Here f is the velocity distribution function for electrons, a = — r -----. . m

where E is the externally applied electric field and — is the electron
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charge to mass ratio, 60, = e© /me where B is the earth's static
D O' i' "• C O

magnetic field, 8f/6t is the rate of change of f due to binary encounters

of electrons with neutrals. The equation is discussed in Chapter 2 of

PKP and the exjjrvesrsion for the general form for the collision

integral, 6f/6t , is given by (2~47a) in PKP. Because the analysis and

notation is simpler if the static magnetic field is. suppressed, it will be

neglected. The magnetic field .effect might be expected to be small in

any case..because, for the problem at hand, the wave frequency is well

above the gyrofrequency. The magnetic field can be reintroduced at the

end of the analysis if necessary.

B. Further Assumptions and Spherical Harmonic Expansion

Equation 2. 1 is much too difficult to work with as it stands.

What is often done is to expand the distribution function in orthogonal

functions in the hope that the resulting (generally coupled) set of equations

can be truncated and solved. When collisions are between electrons and

neutrals, the small energy exchanged in an encounter makes a spherical

harmonic expansion appropriate. A discussion of this point is given in

Chapter 3 of PKP. In the case that differential cross sections depend

only on .the total scattering angle, not on azimuth angle then the distribu-

tion function, when expanded in spherical harmonics, has no azimuth

dependence: -In fact, especially for. one of the models that will later be

used, the cross section for inelastic collisions does have azimuthal

dependence. But, because the interest here is only in energy relaxation

and therefore, as will be seen, only in the spherically symmetric part

of the distribution, the presence or absence of aximuthal dependence

will hot affect the end result. On the other hand azimuthal dependence

would ordinarily affect an analysis of momentum transfer effects, but
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inelastic collisions are unimportant in momentum transfer in the D-region.

Therefore the assumption that cross sections do not have azimuthal

dependence is justified in the following work.

With this assumption the expansion 3 -16 in PKP becomes

f = fQ(u) +3c6j(\i) cosO 2. 2

where 9 is the angle between the velocity of an electron and the ensemble

averaged drift velocity and where u is the electron speed. When the static

magnetic field is neglected the drift velocity is opposite the direction

of E. The complete expansion corresponding to 2.2 is

/ ' \ "n / r\ \ *"> O(u, r) P^(cos 9 ) 2.3

1 = 0

where P^ (cos 9) is the Legendrerpolynomial of order I. The averaged

energy is

TT f 1 2,,> -n ,3 ox,U = \ ry- mu f (S.E-,, u) d u 2.4

Using the orthogonality property of P. this becomes

00

U = 4ir \ y mu f (u, r) u du 2.5
o

What is therefore needed is an equation describing the time dependence

of if ^ since we are only interested in energy relaxation.
r

The expansion 2.3 converges rapidly, and is therefore useful,

when the energy loss in a collision is small and when the applied electric

field is not too large. These conditions are satisfied in present wave

interaction experiments.



-8-

" Now6f/6t mustibe expanded in Legendre;polynomials. This is

done in Chapter 3 in PKP in a two step process. First it is assumed that'

the gas molecules are infinitely heavy so that no energy is lost by an

electron in an -encounter. This results in the expansion ,

6f
W

2.6

t = 0

where

J
u) = Nu (1 - P c e s ' 2.7

is the v.th order collision frequency, N is the density of the neutral

constituent, I is the differential cross section for an electron collision

with a neutral molecule, and x is the scattering angle in a collision.

Notice that v is zero, v, is the definition of the collision frequency

for momentum transfer. But a non zero v is required for an energy

relaxation analysis. Therefore the assumption of an infinitely heavy

scatterer is relaxed and corrections allowing for scatterer recoil and

scatterer motion.are made. This is done in Chapter 3 of PKP and

the result;; for elastic collisions is

1J f —V I —
0 0

1

2u au

2m
M-m

•2 * 'J--fc

v u * ( f +2__J
m o mu 2.8

where M is the molecular mass, Tg is the neutral temperature, and vm

is the collision frequency for momentum transfer defined by 2.7,as'.,yA The

result for rotation inelastic collisions is

v f =o o 2u

12 uvh, (f
g

K,T

mu 2.9
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where E,? is the energy transferee! to a molecule in an excitation collision

in which the molecule is excited from state 1 tc

collision frequency for the transition l-*-2 only

in which the molecule is excited from state 1 to state 2, v, is the inelastic

2. 10

where

cr, = 2. 11

where I, is the differential cross section for the transition 1—"2, N, is

the density of molecules in the initial state, and u is the electron speed

after the collision. The general result corresponding to 2. 9 is just a

summation over all possible excitations.

Equation 2.9 can be applied to rotation excitation of quadripole

transitions such as occurs in NZ and O?. A particular state is characterized

by the angular momentum quantum number J. Assume with Mentzoni and

Row (1963) that only transitions J—J + 2 are important. Then.lthe

generalization of 2. 9 for this case is

o o 9u
2u

mKT
g J=0

9f

o mu

where 2. 10 has been used. Combining elastic and rotation inelastic

collisions in 2. 9 and 2. 12., the result can be written in the compact form

v f =o o 2u
2 QU.

- K T. Of
3 t \, , \-~ .' g ° ou v 5 ff • + -—S-m i o mu u 2. 13



-10-

e =
2mv

m ^M - m i

00

2 ^ ]
g J=0

] J , J+Z^J^J , J + 2 m 2. 14

The generalization to several molecular species is evident.

Now take the applied field to be in a particular direction. This

defines the angle 0. Substitution of 2.3 and 2.6 into 2. 1, where v f~

is given by 2. 12 rather than by 2.6, leads to

eE
9Z

J_
u m I o mu

2. 15

= 0

+ u- eE
m + v -f, = 0m l 2. 16

2. 16 is obtained simply by integrating 2. 1 over 0 and 2. 16 by first

multiplying by P , (cos0) s then integrating over 0.

These equations are coupled and involve at least three time ;

scales; the wave period, the momentum relaxation time 1/v: and the

energy relaxation time £//{£ v ). What is desired is an equation involving

only f•;. and only the energy relaxation time scale. One way to do this

is outlined in Appendix A. What is involved is an asymptotic expansion

of f and f, in-multiple time scales. The preceedure results in the

equation A29-

Q J
" o
^t

1

2u2

9au

2e E

3m'
l_

,2 2
^ . v u flfo m — o
- 1 2 - 2 x 9U

(v + w )m
m o mu 2. 17
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where the temporal behavior is slow on either a wave period or collision

time scale. E is the amplitude of the applied field and u is the frequency.

If E varies it is assumed to vary only on a time scale long compared with

1/co or I/v .m • . ;
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CHAPTER III

DERIVATION OF THE ENERGY RELAXATION EQUATION

The appropriate equation to use to derive the energy balance

equation is

• a t
r '2 EoV2 3£0 . u 3 ( £ *,?,*,

2u .3m (v
*-\ __ -Ji- -- I . ^. ,_t , J_ ( ------ -----

Z. Z Z. gu m \ o mu gu° v °m

3. 1

where f is the lowest order (in the spherical harmonic expansion)

spherically symmetric part of the electron distribution having time

dependence only on the scale long compared with the randomization

time and with .the radio frequency wave period; e and m are the charge

and mass of the electron; E is the amplitude of the radio frequency

wave; v is the velocity dependent collision frequency for momentum

transfer; u is the radio frequency; K is the Boltzman constant; and

T is the temperature of the neutral gas. Furthermore
O

->

N °' 3'2m M-m muKT / J. J + 2 J j, J + 2
g J=0

for one molecular species; M is the molecular mass in cgs units;

NT is the density of molecules in the Jth rotational state; <rT T , 9 is
J J , J T ̂

the cross section for the excitation of a molecule originally in state J

to state J + Z; ET T ? is the rotational energy gained by the molecule

in such an excitation. The generalization to several molecular species is

obvious.

In deriving 3.1 it is assumed that spatial gradients can be

neglected so that energy lost by the electron gas is lost locally and not

through conduction or diffusion.
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The energy balance equation is obtained from 3. 1 by multiplying

by 1/2 mu and integrating over all velocity space. The term on the

left is just -77— = -77- (3/2 itT) where T is the electron temperature.

A. The 'Energy Source Term

The first term on the right is the rate of energy input by the wave,

that is, that fraction of the disturbing wave energy converted by collisions

into electron thermal energy. After integration by parts this is

dUE
du

d t 6 m J 2 2 g u
o m

For a particular model for v this can be written in terms of a semi-

conductor integral provided f is Maxwellian [Burke and Kara (1963)].

As an example, for the model that will be used to derive G,

. . v = aNu 3.4
m

where a is a constant and N is the neutral number density. Substituting

3.4 into 3.3 one obtains

dU_, 5e? E2

E v. o
dt 4mco

i A

m i ^~bl£ V Vm
U3/ V- ( ,. /0 l u / V I 3.6

where v = ——-^ is the collision frequency for the most probably

speed.

B. Rotation Inelastic Collisions

The second term on the right of 3. 1 for rotation inelastic

collisions:,only is
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dU. .
•dtmel

J,
o J = 0 O

, J + 2

- K . T 9 f
, , ic '.. g ° o

'
9u

4iru du 3.6

The reasonable assumption is made that only'inelastic collisions with

N7 and O., are important. Energy level populations, NT can be obtained
£ ' LA J

by following Hertzberg (1950) as follows.

N,, has-nuclear spin I = 1. The relative populations of the total

number of states with J even to that with J odd is 2 to 1. Assuming

a Boltzman distribution of energy levels, take

_B J(J + 1)
1

Njjfeven) = p N j ( 2 J . + 1) e

-B, J(J

N1(J(odd) = v N x ( 2 J + 1) e
KT;

g

where B, is the molecular nitrogen rotational constant, N, is the number

.density,. and (3 and y are to be determined. By summing over all J,

requiring the total sum to be N, and the ratio of even to odd states

to be 2 to 1, and replacing the sums by integrals

B,J(J + 1)

2B,
1 19KTi

(2J + 1) e
lJ

6: J, even

3: JTcodd

O? has. nuclear spin 1 = 0 and all even J states are unpopulated.

A similar argument to that used for nitrogen leads to

N2J = N2
6

a2 J(2J+ 1) e

B2J(J + 1)

g 12J

q: J odd

o: J even

3.7

3.8
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Furthe rmor e

Ej = BJ(J+1)

so that

3 '9

Substituting 3. 7, 3.8, and 3 . 9 into 3 . 6

P=l J=o
00

r
. Hue-

J . ,

_o K ,T
-u- (fo + F-)du 3.10P J , J + 2 v mu 9u

This expression will be used to evaluate the inelastic loss rate by using

'specific cross section models for O9 and N? .
C* £i

The f i rs t model to be considered is that of Gerjuoy and Stein (1955).

In this model the molecule is considered to be a point iquadrupoleV--Polariz-

ation effects, which distort the wave function of the molecule are considered

negligible. Also, the Born approximation is used on the electron wave

function. The cross section for excitation is

_ _ _ _ . 1 / 2
J, J 1 - "v^- ru / | 3. 11

1 . .... ?L'T . mu1..

where Q is the molecular quadrupole moment, a is the first Bohr radius

of the hydrogen atom, B is the molecular rotation constant, and -=- mu'

is the incident electron energy.

This model, seems to be quite good for :N_ [Dalgarno ( 1962)^ , Engelhardt
LJ

Phelps and Risk (1964), Phelps (1968)] in the energy range of interest in

wave interaction work, provided Q is chosen to fit the experimental cross
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section data, rather than as the actual quadrttpole moment. At higher

energies polarization effects become more important [Sampson and

Mjolsness (1966)] and a more sophisticated model must be used. How-

ever, it seems simplest and sufficiently accurate for present work to.

use the Gerjuoy and Stein model for nitrogen at low energies.

The lack of agreement between theory and experiment at higher

energies has lead Sampson and Mjolsness (1966), Takayanaki and

Geltman (1965) and Geltman and Takayanaki(1966) to improve the nitrogen

cro.ss section modelby including polarization effects through use of a

non-spherically symmetric interaction potential, and by allowing for

distortion of the scattered electron wave function. Phelps (1968) indicates

that the Geltman and Takayanaki model does, not fit experimental data as

well as the simpler GS model. The Sampson-Mjolsness model, however,

agrees well in a wide energy range with experimental N~ cross section
. • • . - O

values, Phelps,(1968).

The situation involving O9 is not so simple because of the difficulty
L*

in measuring experimentally the O? cross sections at Idw energies, [Hake

and Phelps (1967).]. Such measurements are needed because they will be

seen to critically affect the G-factor. The Gerjuoy and Stein and Geltman

and Takayanaki models for O_ give quite different cross sections,

particularly in the range of energy in-which we are interested. The Gerjuoy

and Stein model is almost certainly not-correct, but the Geltman and

Takayanaki model may also be held in doubt because of the poor agreement

between Geltman-Takayanaki theory and experiment for N?, [Phelps (1968)] .

Sampson and Mjolsness have, not done, calculations .for O_. Phelps (1968)
. ' - o

indicates that experimental results .are not able to resolve the conflict
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between the Geltman and Takayanaki and Gerjuoy and Stein results. The

considerable difference between cross sections for O7 predicted by these
LJ

models.is an indication of the state of experimental work on O~. Because

of this situation calculations of G will be done for both Geltman and

Takayanaki, and Gerjuoy and Stein models for Q For the Gerjuoy and

Stein model take Q to have the value indicated by Dalgarno (1962) to bell. 8

in the energy range 0. 1 ev < E<n < Q. 3 ev. The energy of interest to this

work is -^2 x 10 ev. For the Geltman and Takayanaki model a reasonably

good fit to the curves in Figure 5 [• Geltrftan and Takayanaki, 1966] is

obtained by taking

3. 13

It should be noted that the curves in this figure can be altered by a different

choice of the parameter A. For this reason the closeness of fit 3. 13

represents should not be taken too seriously. The real values of the

cross sections might be obtained by choosing the numerical factor in 3. 13

-4as much as a factor of ±3 with respect to the 4x10

C. Elastic Collisions

The second term on the right of 3. 1 for elastic collisions only is

dU , v- . 2 p „ kT 9.f
r Qel \ 4-rr m I 4 ' !

-4 a 2 ,2J + 3)2
o

r i 2
± mu:1

B2(4J + 6)
1

P o

r
\ v u
J mp- m J mp ' mu

p = l

(fo + — ^) du 3. 14v '

It will turn out that this term is negligible compared with the inelastic

loss rate in the energy range of interest in this work. Nevertheless, it

can be carried along through the calculation of G for the sake of generality.
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After combining the results 3. 3, 3. 10, and 3. 4 the energy balance

equation is

dU
dt

oo 3
v um /8f

6m 2 2
v + GJm

Idu

2N B
P P

CO

f B

kT'
P = l

I
J = o

-B
.a.

o mu
_

ou du

00

P - l

4.m2 f 4,, k*g ?!o. ,-^7-= \ v u (f'. + a—5—) du
M - m J mp o mu 9u 3. 15
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CHAPTER IV , • . •

DERIVATION OF G

A. Definition of Gv from the Energy Relaxation Equation

Gv is defined by assuming the energy balance equation can be

written in the form

dU
dt = -Gv (U - U •-) + S .4. 1

where v is an appropriate collision frequency, U ; is the thermal energy
&

of the neutral gas, and S is the energy input rate.

It is obvious that 3. 15 does not have the form 4; 1 in the general

case. However, when the electron distribution function is Maxwellian,

3. 15 has the assumed form and at least for this case, Gv is defined.

When the Maxwellian assumption is justified, 3. 15 leads:,to

2 2
dU 6 Eo

co

..Vm
,. 2 ^VmpfoU du

2N B

P = l J = o

a T ( 2 J + l)(4J + 6) e. kT *pj g

"PJ,

f =
o

m
2-rrkT,

3/2 -iiiu
e "2TT 4. 3
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where T is the electron temperature. Comparing 4. 1 and 4. 2

2 oo

Gv = Y 4irm _L_ f v - f, .u4du
L M^-m 3 k T J ^ '

P = l

+
j

D ( 4 J + 6 ) e

-BPJ{J -1
2 ' " ^~ ' ' ~

P= 1

4.4

B. Discussion of Averaged Collision Frequencies

From 4.4 it is seen that G is defined when v is defined. There are

several averaged collision frequencies that can be defined for a given

velocity dependent collision frequency model. Three of these are: the

averaged collision frequency, the energy-averaged collision frequency (or

the collision frequency for energy transfer) , and the most probable collision

frequency. Any of these can be used to define G and the resultant G's will

turn out to differ only by a constant factor from each other. But it seems

to be most natural to define G for the purposes of wave interaction in

terms of the particular collision frequency that is actually measured in

wave interaction experiments. This is the most probable collision

frequency.

To be specific take the collision frequency to be

2

Vm(u) = L Vmp(u>
P = l
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a = 3. 7 x 10~2 3(cm- sec) 4.5

-23
a- = 1. 3 x 10 (cm - sec)

where (1) refers to N and (2) to O and where a has been computed from
L J £ * ' J . • • • _ , - -

the data of Pack and Phelps (1961) and a_ from the results of Mentzoni

(1968). Define

2v
aN = 2 a: 4.

P = l
where N is the total density. N^ -h N^, then

v ( a - ) = aNu 4. 7m

With this model and using 4. 3 the averaged collision frequency is

CO

C , <> f A z* 3aNkT
V = \ V (u) ff 4TTU du = - , QJ mv ' o m 4. 8

The energy averaged collision frequency is

1 . - 2

fve = U v (u)f / 4-mr du = 4. 9m o m
6

Finally the most probable collision frequency is

A 2aNkT . ..
v, = 4. 10m m

In wave interaction experiments the change in the index of refraction

due to passage of the high power signal is measured. The index of

refraction is related to the plasma parameters through the Sen-Wyller

formula ( I960) . This contains only v . In certain limits the formula

reduces to the simpler Appleton-Hartree formula (Sen and Wyller, I960)
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and.in these limits the formula is in its simplest form in terms of either

v or v . However, for the general situation v is the collision frequencye m T. 7

measured.

For-the sake of completeness, when G is computed it will be

computed from Gv for the above three collision, frequencies. " -

C. Evaluation of G for Two Cross Section Models

With the model given by 4. 5, the first term in 4.4 is

2
lOkT

I "* a-.-N':
m / j M - m P P

. p=l P

Taking Gerjuoy-Stein models for both N~ and O?, and using 3. 11 and 3. 12

in. 4. 4 it follows that .,

_ lOkT \ m • M . .,G v = —; / -=;-= a -N" 4.11m £_, . M - m p p
p=l p

-B 1(1 + .1)
• • - P - . - ' • - ,

a. j(J + l)(J + 2)(2j + 3)e kTg K(P,J,T)

p= 1 " B J = o

where
- •

B (4JH- . 6) :^ 3/2
K(P,J,T)' = qp j . x . + \T- e Xx^ dx

0 4. 12

and the integral is

b(P' - - - 2
J

4. 13

b(P, J ) e ' - K j f b f P , J ) ) [ 1 - 2b(P, J ) . ] H - 2 b ( P J J ) Ko(b(P,J))

where
' " ' • ' ' ' ' B • " • • - '

b(P,J) = - (2J + 3) 4. 14

and where K, and K are Bessel functions of -the third kind.
1 o
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It is a good approximation to replace 4. 13 by unity, since B «kT

in the temperature, range of interest. Further, because BAJ./kT « 1

the J-sum in 4. 11 can be replaced by an. integral. When this is done

equation 5 in Mentzoni and Row (1963) for N_ only, is obtained. A
LJ

similar approximation can be done for O_. The result is

Gv = IQkT
m

m
a- N • +

p =
M ~ - m p p

P

16
3

2kT
Trm

. "Ql

Y N ( p

L NP k.Tp=l *
qp.

4. 15'Call 4. 15 the GS model.

The second model is obtained by using a Gerjuoy-Stein model for

the NZ cross section, but a Geltman- Takayanaki model for O In this

case Gv can be written in the form of 4. 1L provided

K ( 2 . J , T ) = 3 X 1 0
-

2) 4. 16

The analytical approximation.for this model, derived in the same way as

4. 15 is

Gv =
lOkT
m

m
+

16 /2kT"

P=l "

Call 4. 17 the GT model

1/2

4. 17

The expression for G is obtained by dividing 4. 11 or 4. 17 by the

appropriate collision frequency. In Figure 1 are plotted G-factors as a

function of the electron temperature for the GS &nd the;. GT models and for

•Cthe: three..collision frequencies. -There are differences "which occur '.."..

;:because:of the di-fferent collision frequencies used.': .vBu£thereiare also--
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considerable differences between G's corresponding to the same collision

frequency but to different cross section models.

The latter differences are due solely to the Geltman-Takayanaki

model for O?. Specifically they arise because, in the energy range of

interest, the Gerjuoy-Stein cross section for oxygen is practically

independent of energy, -whereas the Geltman-Takayanaki model varies

as energy squared. This in itself would not result in such a large

difference were it not the case that the cross section for O,, in the GT
u

model begins to dominate the cross section for N~ in the GS model.

It should be emphasized again that the GT model has not been

verified experimentally. Nevertheless, if it does turn out to be a better

model than the GS model for O?, then G, and therefore Gv, is larger

than has been assumed and measured in wave interaction work.
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X I O
20

15

10

a GS1 AVERAGE COLLISION FREQUENCY
A GTJ V = 3aNkT/m

o GT1 ENERGY AVERAGED COLLISION FREQUENCY
• GSJL l/e = 5aNUT/m

--- GS1 MOST PROBABLE COLLISION FREQUENCY
GTJ Z/m = 2aNkT/m

\

\

\

\

100 200 300 400

FIGURE 1: Ionospheric G Factor for Two Cross Section Models and
Three Collision Frequencies.
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• CHAPTER V

THE.DISTRIBUTION FUNCTION IN THE STEADY STATE

It was seen in Chapter IV that G is defined only when equation 4. 1

can be written. This seems to rest on the assumption that f is Max-

wellian. In this chapter some of the limiting forms of the actual

distribution function will be considered. - .

A. The General Solution

Skharofsky, et al. , (1966) derive an expression for the steady

state electron distribution function. This can also be obtained by using

equation 3.1 in the steady state limit. The solution, in the absence of a

static magnetic field, is

r . -W 5. 1- • . . f = Ae
O :

w =

ur

mudu

, - . . e 2 E 2

kTr + — ? _
g 3 m £ ( v r . + t a ) 5 . 2

Throughout the following calculations take vir to be

vr- = aNu (sec ) ' 4.7

where, from 4. 5 and 4. 6 a has the approximate value

-o _23
a = 3. 0 x 10 (sec - cm)

and N lies in the range

3. 8 x 1014<_ N < 6. 5 x TO15 (cm"3)

between 80 km., and 60 km. In the same height range the temperature

range is
186 < T < 243

• • • • . - • • g - - - . : . '
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Again define $ as in 4. 10, but replacing T with T .
s mg ^ g

Then v lies in the range

6 . 2 x l 0 5 < v < 1.5 x 107 (sec'1)- mg — v '

in the height range 80 km. to 60 km.

Distribution functions will be evaluated for two models: one in

which | is constant and the other in which £ = (3/u . These maybe thought

to correspond to the GT and GS models, respectively, discussedlin

Chapter IV.. One can make.an actual computation of £ by using equation

3. 2, or by defining G v in terms of £v through the use of 3. 1 and an

assumption that f is Maxwellian. Using the former^, method one

for the GS model

m

P = 1

2m v i_

M - m
P

8q B N
, P P P

mu 5. 3

and. for the GT model

2

m

^8q1B1N1 8xlO" 4 a 2N,mu-
o ^

mu .5.4
p = i

In the energy range of interest in the D-region the elastic contribution

can be neglected. Now although £ as defined:by 5. 3 varies as 1/u

and as defined by. 5. 4 as a more complicated function, these can be fitted

fairly well by the above representation in the energy range of interest,

" -2
provided we take P = 7. 7 X 10 and the constant value equal to 1. 07 x 10

The two models, when used in 5. 2 lead to
x dx

5.5
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dx " " • - '

+ - =5- : 5.6

where

x = mu2/2kT
g

x = mu2/2kT 5. 7

c = 2e2Eo
2/(3m2|3to2) 5.8

b = e2Eo
2 / (3m£.kT oo2) . 5.9

o

5 '10

£ =. 1.07 x 10~2 5. 11

(3 = 7. 7 x 107 (m2/sec2) . 5.12

5.8 and 5. 9 can be rewritten

c = 4, 04 x 1014 P/ (h2£2) 5 .13

b = .95 x 1017' P / (h 2 f 2 T ) . 5.14
O

where P is inmegawatts, h in kilometers, and f in cycles per second. . In

interaction work at Penn State f = 4. 5 x 10 and P = .15 . for which

4. 8 x 10"4 < a < „ 28

. 047.< c < .084 5. 15

.060 < b < . 081

in the-height range 80-to 60 kilometers.

All of the values in 5. 15 can be increased two orders of magnitude

by decreasing f to 1.x 10 and by increasing P to ISOmegawatts. It is of

interest in-wave interaction work to know whether results obtained from

the energy balance equation 4. 1 are meaningful for a fairly wide range of

frequencies and powers. In other words, are conditions easily arranged
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so that the energy balance equation 4. 1 must be modified? To at least

partially answer this question we want to determine whether 4. 1 is modified

in any essential way when the distribution is given by 5. 1 and 5. 2.

B. Solution When£ is; Constant

5 . 6 c a n b e integrated t o give • . . . - • .

= x - ba-1/2(T+B)~1/2 tan-^a^xd+b)'172) 5. 16

Distribution function averages cannot be evaluated analytically using 5. 16.

For this reason consider limiting cases in which 5. 16 can be approximated

by a simpler dependence on x. First let the argument of tan be large.

Then

WGT = > f + b 'a~1/2(l+br1/2 + x + ba'V1 - I a'2b(l+b) x"3 5. 17

When b/a «1 and a »1 this can be replaced by

, W_ = x +. ba"1 x"1 5. 18
VJ 1

This corresponds to a very high collision frequency or low operating frequency.

The second case is that where the argument of tan is small. Then

= x (1 + b)'1 + la b x3 (1 + b )~ 2 5.19
J

It 'is assumed here that the peak in the speed distribution lies near x = 1,

so we are interested in approximations valid in this region. However,

when b is of order 100 the electron temperature. is on the order of 100 times

the neutral temperature. When this is the case the second term in 5. 19^ is

the significant one. However, such values of b are practically unattainable.

Then for all practical situations in which the approximation 5. 19 is valid,

, 1/2 j^,,or when a <<1

= x (1 + b)"1 5 .20
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which..is a Maxwellian with temperature .

T = T (1 + b)
g
2 ' • ' • • ' ' • •

C. Solution When £ = (3/v

Again 5. 5 can be integrated exactly, but the result cannot be used

to evaluate distribution function averages. Consider first the case in

which a£»>l .

W « c ~ x - -In- (1 + ax/c) 5.21
' • • - vjo 3,

This again applies for high collision frequencies or low operating

frequencies. The other case is that in which a «1

W-,c = -In (1 + ex) " . 5 .22
kjC3 C

This applies to most of the D-region high wave frequencies for values of

c not above about 10.
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CHAPTER VI

EFFECT ON ENERGY RELAXATION BY USING N ON-MAXWELLIAN

DISTRIBUTION FUNCTIONS

The definition of Gv (4. 4) obtained from (4. 1) and 3. 15 rests on the

assumption that fo is Maxwellian. It was seen in Chapter V that the

distribution does not have the form of a Maxwellian in general. However,

for small applied fields it is natural to expect that the actual distribution

would be nearly Maxwellian and that (4. 2) and (4. 4) are good approximations.

In this chapter the energy relaxation equation will be obtained using

approximations to the actual distributions that converge uniformly to a

Maxwellian as the applied field becomes small. A comparison will be made

with (4. 2).

A. The Energy Balance Equation for Two Models

The .energy balance equation that follows from 3. 1 with 3. 2 is

dU
kT a,.; .

g. rdt ; 2
2kT ,
-• '-g

m

3/2 r00 ^T- <£n e E

\ °
5* 3mo)2kT

5/2

1+ax

df
4TT

o . 5/2
4ir

df.
'. LO

dx

6. 1 ..

where all constants are defined in Chapter V and where the following

change of variables has been made

x = mu /2kT .
g

6 .2

This'equation is identical with 3. 15 when 3. 2 is used. With the approxi-

mations, discussed in Chapter V, to the Geltman and Takayanaki and to

the Gerjuoy and Stein models 6. 1 becomes

dx
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dU
dt

kT coa J ' ;t
• - & , - • - £

• - : . = ' 2

2kT ,3/2
- - — o

m
If ax

dx

6.3

for the model where O? cross section is Geltman and Takayanaki and the

N9 cross section is Gerjuoy and Stein where £ and b are given by 5. 11 and
^ ' '

5.9 respectively. Call this model GT. Similarly 6. 1 becomes*

dU
dt

kT coa
- g - -

1/2
(3m

m

3/2
r co

. 5 /2

2+ ax

df. o
dx~

00

x 3/2 .
X 4TT

df

dx

6.4.

for the model where-both N_ and O cross sections are Gerjuoy-Stein with

p and c given by 5, 12 and 5. 8 respectively. Call this model GS. In the

steady state 6. 3 and 6. 4 are satisfied by distributions derived from 5. 6

and 5. 5-respectively.. Therefore, when discussing the effects of various

non-Maxwellian distributions 5. 5 and 5. 6 should not be used in non-steady

state conditions, since they satisfy the steady state parts of 6. 3 and 6. 4 .

alone. What will be done is to use distributions derived from expressions

identical in form to 5. 5 and 5. 6, but with constants different from c, b, a.

B. Comparison of Relaxation Equations Derived Using a Maxwellian

with Those Derived Using Non-Maxwellian Distributions. .

Consider first the GT model and 6. 3. When a «1, which is satisfied

at a frequency of 4. 5 MHz throughout the D-region above 60 km. the

distribution is Maxwellian, as is implied by 5. 20. The next higher order

term in the expansion of 5. 16 becomes important only when b is several

orders of magnitude larger than indicated in 5. 15. It is therefore clear

that at the presently used frequency and power, the electron distribution
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is Maxwellian and the energy balance equation has the assumed form ..

4. 1 provided.the GT model is correct.

When a>>! the simplest approximation to the distribution is derived

from 5. 18. But the result does not coverge uniformly for all x to a"

Maxwellian. for small —.. If a better approximation is used then the

required integrals in 6. 3 cannot be performed.in closed form. The

condition a«l applies only below 60 km. or when a lower operating

frequency is used.

Consider next the GS model and 6. 4. When a«l the distribution

is obtained from 5. 22 and has the form

fb = m 3/2,« in.-1) ,1 + vx)
" - 3/2)

-1

6.5

Defining the temperature by

|kT = i muZ

and using 6. 5 leads to

=| (1 - T-/T)

6.6

6.7

Using 6. 5 and 6. 7 and carrying out the integrations in 6.4 one obtains

6. 8

JTT kT wa.dU _ . ..g -...
dt 2

(3 m
2k T'
• g

15 |.T
' ~T c T7

L-g
+ 3

which.is identical to the result obtained by using a Maxwellian in 6. 4.
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Therefore the balance equation has the assumed form 4; 1 and Gv is the

same whether evaluated using a Maxwellian or 6. 5. These conclusions

follow if the GS model is correct and provided c i-s not larger than about

10.

When a-»l then the distribution is obtained from 5.21 and has the

form

3/21
6 2ir

m
2kT

e"X : ( x + o ) Q

00r 1/2 -x. , .o\ x e (o + x) dx

6.9

where the integral can be expressed in terms of a Whittaker function

(Abramowitz and Stegun, 1964). Defining the temperature as in 6 .6 , one

m

finds
\ 3/2 -x. o ,J x e (o + x) dx

1/2 -X. . 0 ,x e (a + x) dx

6. 10

Using 6. 4 it follows that

CO

dt
m

-1/2 -x. .Q ,x e (o + x) dx

C l / 2 _ - x!/£. -X. , . a jx e (a+ x) dx

6. 1.1

The evaluation of the integrals results in expressions which do not

reduce 6. 11 to the form of 4. 1. ' However, considering the limit that

c/a«l and a:«l, by expanding the Whittaker functions in powers of o

one can show ,;

T/Tg: = l + Ta 6 - 1 2
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plus higher order terms and

kT coa UZ

HT = T
g/ 2+a

accurate to first order in a. This gives an energy balance equation

,TT k.T coa •"•-,au ~e^ . i r*" i ! < - / - , - - 4 _ 2 a | 6.14

g ' L J

with a g'iven by 6. 12. The equivalent equation for a Maxwellian derived

from 6. 4 is

,TT kT wa ,/ o ir_ T / ™ i i
^- - - g ' " - Pm 2c ^g 3 JL 1 A IK
dt 2 2kT T" T ^ T- ^ b' ib

I gl i \ g / J

T6. 14 and 6. 15 are identical to lowest order in -=- - 1. But they begin
T5

to differ significantly, particularly in the energy input term, when

which is essentially the same as c/a ~. 1. . Therefore the balance equation

has the assumed form 4. 1 again provided c/a«l and the GS model is

correct. The inequality would be satisfied for powers up to 100 times

that presently used.

C. Discussion

It can be seen that the assumption that f is Maxwellian for the

purpose of obtaining the energy balance equation is well justified at least

in the cases considered. Apparently this is so because the form 4. 1 is
I

somewhat insensitive to the exact shape of the electron distribution. For

both the GS and GT models the distribution can be taken Maxwellian

whenever the collision frequency is small compared with the wave frequency
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and the operating power is not more than 100 times that now used. '. The

distribution can also be taken Maxwellian, at least for the GS model, when

the collision frequency is large compared with the wave frequency and the

operating power is not more than 100 times that now used.

It should be noted that c and b are increased as the operating

frequency is decreased. The distribution might be sufficiently

non-Maxwellian, if the wave frequency were 450 kHz and if the operating

power were the same as now used, that 4. 1 is not justified. But at such

low operating frequencies static magnetic effects most certainly would

have to be included in a theoretical analysis.
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CHAPTER VII

DISCUSSION AND CONCLUSIONS

A kinetic theory derivation of the energy balance equation (1. 1)

appropriate to D-region wave interaction studies has been reviewed.

The energy balance equation has the assumed form 4. 1 and 4. 2 whenever

the electron velocity distribution is Maxwellian. Then Gv is definedxin

4. 4 and G is defined when an appropriate collision frequency is defined.

Two models for G have been discussed, based on two theoretical

models for the interaction between low energy electrons and molecular

oxygen and molecular nitrogen. The first (GS), is based on Gerjuoy-

Stein cross sections for both N-, and O_ and has been considered by ' . . : ' :

Mentzoni.(In this case Gv is given by 4. 13 and 4. 14 or by 4.17). The

Gerjuoy-Stein model for N_, although very simple, is almost certainly

reasonably accurate in the energy range of interest here [ Phelps (1968)].

However, using the Gerjuoy-Stein model for Q~ may not be justified

3/2
[ Phelps (1968)]. In the GS model, G has very nearly T~ dependence.

Furthermore, G depends, on neutral particle densities only through the

percentage compositions, which are essentially constant throughout the

D-region. Thus, G really depends only on the electron temperature and

only very weakly on the neutral temperature.

The second.model (GT) is based on Gerjuoy-Stein cross sections

for N^, but on Geltman-Takayanaki cross sections, for ,O?. In this case

•Gv is given by the approximation 4.18. Through the electron temperature

range of interest (Fig. 1) G is practically a constant and is about twice

the value used and obtained in wave ̂ interaction studies [ Kissick (1970)] .
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When better experimental data on O,, cross sections become

available, and if the cross sections are neither of the Gerjuoy-Stein

or Geltmari-Takayanaki forms, then 4.4 can be used to obtain the

corresponding Gv.

It is seen from Fig. 1-that the apparent temperature dependence
c /?

of G ( ~'-T ) obtained from wave interaction studies [Kissick (1970)] is

not explained on the basis of the two models discussed here. In order to

have this temperature dependence either the N~ or the O? cross section,

or both, would have to be inversely proportional to the electron energy.

This would seem to be very unlikely.

Approximate limits have been determined on the practical use of

the energy balance equation in the form 4. 1, and therefore on the definition

of G using this equation. This has been done by using approximations to

the steady state form for the actual electron distribution function in 3. 1

in place of a Maxwellian. . The resulting equation is compared with the

energy balance equation obtained using a Maxwellian distribution.

This comparison was possible in two limiting cases. First is the

limit a«l, where (a) is defined by 5. 10. At the wave frequency, now used

at Penn State, this is satisfied throughout the range of 60 to 80 kilometers.

Then, even though the actual distribution is not Maxwellian for the GS

model, the energy balance equation is the same as though it were- Max-

wellian. In the GT model the actual distribution is Maxwellian in the

above limit. Thus, provided the incident wave power is not more than 100

times that now used, the energy balance equation has the form 4. 1 to zero

order in (a).

The other limiting case is that where (a»l and c/a«). Now

c/a «1 is satisfied throughout the height range 60 to 80 kilometers with



the present operating frequency and power. This ratio is independent of

frequency. The above conditions can be thought to apply at the present or

lower operating power, but at lower frequency (<500 K c). For the GS

model the energy balance equation has the form 4. 1, even when the actual

distribution is not Maxwellian, to lowest order in c/a. However, when

c/a is of order one this is no longer so.

At the present operating frequency it can be concluded that the

energy balance equation is of the form 4. 1 and G is well defined provided

the power used is not greater than about 100 times that now used.
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, APPENDIX A .

DECOUPLING THE PERTURBATION EQUATIONS

.BY AN ASYMPTOTIC EXPANSION

Begin with the equations

a f
o 1 - 8

2v

2eE <(> (t) 00 ' V
2f

3m 1 mv3 (ff

kT

mv •SI?

a f, eE A (t) a f
1 , , oY v ' o

-5—— = -V f +- ^
o t m 1 m o v

A 1

A 2

Define the dimensionless constants and variables

2kT \ -1/2/2kT \
g)U=V-n7-/ v

t = wt A 3

o = eE /(2mkT co0 g

g0(T) = £0(t)

= f j ( t )

Then A 1 and A 2 become

1/2

9 g o i a
a u

2 a c j > (T) .2
-^-i—' u g, +l - c o -

1(u

9 gB o A 4

m
A 5

Assume two distinct time scales [ Cole (1968)] T and T, where T. is
long and T is short. Assume further that . . . ,B o T = T (T , T,) Ao
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9 T 9 T
such that -js-—: =. 1 and -̂ —:— = € where € is a small parameter.K- —o r

T, is associated with £ v /oo and T with v / co. Accordingly1 • * m o m & *

assume

w = € £ (v) A7

vrr/ " = ^ *v)

where T) and t, are of order 1. . Now assume the expansion

Sn
 =

A8

A9

gl =

to be valid-in an asymptotic sense [ Cole, 1968] .

Substitution of A 7 - A 10 in A 4 and A 5 leads to

A' 10

fl ° / \go 1 8 f a < J > (To) \ 2 o ...
' —— — ' u g, A 111̂

A 12

to lowest order in « , where <|> has been taken to depend only on the

fast time scale for simplicity. To first-order in e

o o

^ o

9 . 2 1 . 1 . 9
T-U

(U %^ + - i
1

9 |r/ 3 o u2 d

•5F-LUU go +~Z 1

A 14
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Now these expansions still contain both time scales. What will be done

is to take averages over the short time scale rr . But this requires

solving for the short time dependence. However, A 11 and A 12 are no

more easily solved than before. Therefore expand in the small

parameter a. • •

gg° = ar + aa + a a
A15

The.initial conditions are that fr is Maxwellian with temperature T

.and fi = o and <a> = o at time t = o. . Thus a is initially Maxwellian and

b is zero. To lowest order in o,.A.'ll and A 12 give

9ao
rr
o

= O A16

Thus a can depend only on the long time scale. To first order in -a

da,,

o
= o A l l

8b,

W~ = " nbi
8a

o'

which implies that

9a sin T
-

COST
c • .0 + Fie Tb A18

where F. is an arbitrary function having no short time dependence and

where <j> ( T C ) = sin-p/. To second order in '<*

da..

3u
A 19
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9b

which can be integrated, solving for a_, b_. Expand A 13 and A 14 by

taking

gg = CQ + H C J - + a c.

gj. = do + adj + a &2

To lowest order in a,_Al3 and A 14 give

A 20

9a 9c;:

dr

2 9au . o A21

8a
= - T]d

T ' O
O

A22

By A16,a is independent of T . Integrating A21 on T it is seen that

in order that c be finite it must be required that

9a
a +o

2 9au o-s- —x —2 9u

9cQ

and -15— = 0
oro

A23

A24

To reconstruct A4 and A5 with the short time scale absent expand

each term using the results A6 to A24 and average over T . Assume

a « e . To lowest order the f irst term in A4 is

A25

and next

-_ a r\ 9a
A26

and finally
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, 3
(u g

3 2 8a
u

A27
2u

Therefore to lowest order

d-T

8
) u

2 2 9g
a T|U ~c3 r7? ^ m , 3

CO
9TT

A28

where T refers only to the long time scale. Substitoting the 6rigirialr •--

variables

8f o
•9T-

2^ 2 2
Q e E v va r o m

~
9f

3m (v + co )

o
)v

/ v3(fm x o

9f

mv v- A29

m


