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 ABSTRACT
A derivation from kinetic theory of the energy balance equation
‘used in wave interaction work is reviewed. G is then defined and two
models for G are presented: one, a model based on Gerjuoy-Stein.cross

sections for both O2 and N the.‘other based on a more recent model for

2?

.cross sections, The two models differ considerably in .their temperature

) | |
dependence. The limits of applicability of the usual energy balance
. equation (hence of the concept of G) are discussed and it is found that no

difficulty arises unless the transmitter power is more than- 100 times

-that now employed at the present operating frequency.
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CHAPTER I

INTRODUCTION -

A. Ifﬁéortance of G in Wave Interactibn

N Cross modulation éxpéfirﬁents Ha\;e become ‘a.n.impovrtant technique
for determining the parameters of the D-region (sﬁch as 'elec.tron-density'
and colliéion frequency) [Lee and Ferraro (1969)]. There occurs in‘ thé
theor§ of these-v&ave interaction experiments the so-called ioﬁospherié. z
G«factor [Ratcliffe and Shaw (1948)]. G has vtraditionallyv representec'ltlﬁle
fraction of excess energy (in excess of the thermal energy of the neutral
background) lost by an electron on the average in a collision with neutral
-molecules during and immediately after the passage of a heating pulse

of radio frequency power through the D-region. G is defined in the
“assumed form of the thermal energy balance equation [Ratcliffe and

-Shaw (1948)]

dy

’_d—t_‘= ='GV(U=U§)+S o 1.1

where U is the ‘electron thermal energy, U is the neutral background

8
thermai enérgy, S is the thermal energy input rate from the rac:liO wave,
and -v is a collision freqﬁency. A historical review of the development
of wave interactién- theory and the role that G plays in it is found in
‘Miller (1964).

It is seen in. Milier (1964')Athat the knowledge of G is critical to
the reduction and interpr}"e.tat-ion Vof wave interaction data. The quantity
Gv is essentially the fn&érse of the relaxation time of the electron

thermal energy. It therefore must be known to- determine the electron

temperature during relaxation and during the passage of the low power
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wanted wave. The electron temperature d‘eitermines the_electron
collision frequency,zand thereforé, the amgurft of interaction.

The model used in present interaction experiments for G is simply
a constant [Kissick (1970)]. It is.assumed to be sufficiehti}; accurate to
consider G cbnstant because the maximum amount of interaétion is
supi)osed to take place in.a rather narrow height ratnge, over which

conditions are thought to be rather uniform. The constant value is

determined by a type of wave interaction experiment [Kissick (1970)].

B. Purpose of this Work

An up to date model for G is desirable in wave interaction work.
There has been an observed apparent seasonal variation of G correlated
with seasonall temperature variation [Kissick (1970)]. This is not
consistent with the modelA discussed above and is also not consistent with
a more accurate model [Mentzoni and Row (1963)] that will be discussed
later. This work will review the role that various ionospheric parameters
pldy in a G model and will present two models which are consistent with :
the latest laboratory measurements to determine whether the observed
apparent tlemperatu-re correlation.can.be explained by an accurate G
model. As a result of this work, incorporation of up to date G models
in wave interaction will determine whether more precise models
significantly affectldata reduction results. |

The ehergy relaxation equation is always assumed to be of the
form 1.1. Conditions ﬁnder which this éssumption is justified will be
discussed. On the basis of this it is possible to -determine practical

operéting frequency and power .ranges in which 1.1 is applicable.



C. Methods Used

A review.of a'derivation of the generalization of 1. 1. using an
appropriate kinetic’ equation will-be presented following closely the
development in Skharofsky, Johnston .and Bachynski (1966). . This-
involves first a spherical harmonic perturbation expansion of the
‘distribution function. The expansion results in a coupled pair of .
equations .involving the spherically symmetric part and-a drift part of .:
the distribution function. An asymptotic expansion of these equations will
be used to separate the different time scales that are present and to
average over the fast time. A resulting equation:i:describing the slow
time development of the spherically symmetric part of the distribution
function'will be averaged over all velocities with respect to kinetic energy
to obtain an energy balance equation. Solutions for the spherically
symmetric distribution function:will be obtained in the steady state for
two collision models and used to-evaluate terms in the energy balance

equation.

D. Results

Two possible models.for G are obtained based on the latest
available theory and experiment on cross sections for N, and O,. Any
later cross section information could.be easily: used to.produce a more
accurate model for G. These two models can easily be included. in
wave interaction theory to-determine the sensitivity of data reduction
results on the G model.

It is concluded that the temperature dependence of G is
critically ;iependent on what the correct cross section model for O, is.
However, neithjer of the presently considered models.explains the
apparent correlation:between G and temperature that results from wave

LIV PGV STV 8 & SR



interaction studies.

It is also concluded that,. af the presently used operating
-frequency for the disturbing, or high power signal, the energy balance
equation.is, in fact, of the form always assumed unless the power is-
greater than about two orders of magnitude above that now employed.
Only. at a 10Wer:altitude, or lower operating frequency, or much higher
power is the energy balance equation altered from.the form commonly.

"~ assumed.
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CHAPTER II . B
DERIVATION OF LOWEST ORDEk DISTRIBUTION:
FUNCTION EQUATION

In this chapter will be discussed the procedure:fdr obtaiding.
an equation that describes the time relaxation of the spherically symmetric
part of the electron distribution. The development is a review of a
rather complete analysis in.Skharofsky, et. al. (1966) (designated by. .
PKP) and an applicétionvSpecifically-to rotation inelastic collisions.
between ambient electrons and neutral molecules such as 02 and-NZ.

The elimination of the short time scales is discussed.

A. Fundamental Assuimptions-and the Applicable Kinetic' Equation-

The first assumption made is that the plasma is of sufficiently
-low density compared with the neutral background, that the only collisions
“of importance are binary collisions between electrons and neutrals.
This is certainly justified in the D-region. Electron-electron and.
electron-ion collisions can be included by a Fokker-Planck approach.
This would be necessary in the F-region. Because of the low density
assumption and because of the smallness of the electron mass, it can
also be assumed that the neutral particle distributions are not affected
by perturbations in the electron distribution.

“»The kinetic equation that applies in this situation:is the Boltzman

equation

B T AT ST g - B
-ﬁ—-gf tu VEtar Vo +uxowy - Vf = , 2.1
Here f is the velocity distribution function for electrons, a = -%——E

where E is the externally applied electric field and f—n is the electron
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charge to mass ratio, Z';b

magnetic field, &f/6t is the rate of change of f due to binary encounters

=é§o/'m'c' where B, is the earth's static

of electrons with neutrals. The equation is discussed in Chapter 2 of
PKP and the expression for the general form for-the collision

integral, 8f/6t, is given by (2-47a) in PKP. Because the analysis and
"lnbta.tion is sirﬁpler if the statié-magnetic field is suppressed, it will be
neglected. The magnetic field'.'éffect might be expected to be small in
any case,because,. for the problerﬁ at hand, the wave frequency is well

above the gyrofrequency. The magnetic field can be reintroduced at the

end of the analysis if necessary.

B. Further Assumptions and Spherical Harmonic Expansion

Equation-Z.ll is: much too difficult to work with as it stands.

" What i's often done is to. expand the distribution function- in orthogonal
functions in the hope that the resulting (generally coupled) set of equations
can be truncated and solved. When collisions are between electrons and
-neutrals,. the small energy exchanged in an encounter makes a spherical
ha.rmonie expansion appropriate. A discussion of this point is given in
Chapter 3 of PKP. In the case that differential cross sections depend
only on.the total scattering angle, -not on azimuth angle then the distribu-
tion function, when.expanded in spherical harmonics, ‘has no-azimuth
dependence: -In fact, especially for.one of the models that wiil later- be
‘used, the cross section for inelastic collisions does have azimuthal
dependence. But, because the interest here is only in energy relaxation
and 't}‘ie_re.fore, as will be‘seen,l only in the spherically symmetric part
of the distribution, the presence or absence of aximuthal dependence
will i;iot- ‘affect thé~end res.ult. On the b'ther hand azimuthal dependeﬁce

would ordinarily affect an analysis of momentum transfer effects, but
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inelastic collisions are unimportant in momentum transfer in the D-region.
Therefore the as sumption‘thai cross.sections do not have azimuthal
dependence is justified in the following work.

With this assumption the expansion 3=-16 in PKP becomes
f= fo(u) -}-:-‘f'f(h) cos® : 2.2

-where 6 is the angle between the .velocity of aﬁ electron and the ensefnb-le
raveraged drift velocity and wheré u is the electron speed. When the static
magnetic field is neglected the drift yelocity is opposite the direction

of E. 'I“he complete expansion co'rres‘ponding to 2 2 is

(4

ffs= z ' fg(u,vt'.) Pg(cose) , 23
£=0 - :

where:Pl (cos 8) is the Legendre:polynomial of order £. The averaged
energy is
U = 5 5 mu’(F, W) d’u 2.4
B L ! . ) . B

Using the orthogonality property of Pz this becomes

@
~U = 4w S‘%— muz.fd(u, ?) uz du - 2.5
. . © ) .
What is therefore needed is- an.equatidn describing the time depeﬁdence
of ;,fo,;,; since we are only intl‘ebrested_inenergy relaxation,
-~ The e#paﬁs_ion 2.3 converges rapidly, and is therefore useful,
. when the en.ergylloss in a collision is srna;.lllvand when thé aﬁpliéd électiic
field is not too large. These-condiﬁons ére satisfied in'—'prélsent Wave

‘interaction.experiments.
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.- Now: &£/ 6t must.be expanded in Legendre:polynomials. - This is .~

done in Chapter 3 in PKP in a two step process. First it.is assumed that-

the gas molecules-are infinitely heavy .so that no ene.rgy_is, lost by an- -

-electron in an-encounter.- This results . in the expansion

@ ,
'% = - E v, £,P (cosb) 2.6
. 4=0 ¥ .

_Wh'(?’re,‘,
vl(u) = Nu S (1 -.Pl('c'o'é X)) I(u,x)dZQ' : 27

is the Vlth order collision frequency, N is the density of the neutral
-const;it'uent,_ I is the differential cross section for an electron collision
with a neufral molecule, and ) is the scattering é.ngle in a collision.
Notice that Vo is. zero. v, is the definition of the collision frequency
-for momentum transfer. But a non zero Yo is required for an energy
relax;ation analysis. Therefore the assumption pf an infinitely heavy

: scatt;af;r is relaxed and corrections allowiﬁg for scatterér recoil and
scatterer motion are made. This is done-in Chapter 3 of PKP and

the result.; for elastic collisions is

kI gf
vi = 1 ] 2m v u’ (f +—8 < © 2.8
oo ZuZ 91 | M-m. ‘m o mu -gu.

where M is the molecular mass, Tg is the neutral temperature, and Avm

is the collision frequency for momentum transfer defined by 2. 7ia,s’.{,v1~z:,

result for rotation inelastic collisions is

2
2E7, uv kT - of :
_ 1 9 12 "1 i<.g o
Vofo T, 2 su mk T (fo + mu 9 u 2.9

The
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where El'Z is the energy transfered to a molecule in an excitation collision -
in which the molecule is excited from state 1 to state 2, vy is the inelastic

collision frequency for the transition 1--2 only

1

Nlu o‘l(u) 2.10

V1

where

q
1

—.‘Sﬁ .IleQ ' _ 2.11. .

where Il is the differential.cros's»section for the transition 1—2,. N1 is
the density of molecules in the initial state, and uv is the electron speed
after the collision. The general result corresponding to 2.9 is just a
summafion over-all possible excitations.

.Equé.tion 2.9 can be applied to rotation excitation of quadripole
transitions such as occurs in Nz.and 02. A particular state is-cha.ract_erizvgdv
by the angular momentum quantum number J. Assume with Mentzéni and
Row (1963) that only transitions J—J +2 are.irﬁportént. Then"the

generalization of 2.9 for this case is

2 /e of .
1 9 [Zu R x Tg o |l ¢

where 2.10 has been used. Combining elastic and rotation inelastic

colliéi-ons in 2.9 and 2. 12, the result can be written in the compact form

o sl T e
v =——-2 |uy §f0‘+"‘"—‘&

‘oo 2u2 80‘_._.. ~ m .mu  gu 2.13

i
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[oe]

: vam 2 2 "
S Mm tomeT EEJ,J-M‘NJ“J, 2| ™ 214
J=0

The-generaiization: to. several _molecula;. species is evident.
wa take the -applied field to be in a particular:direction. . This
defines the -angle 6. Substitution of 2.3 and 2.6 into 2.1, where vdf -

is given by '2.12 rather than by 2.6, leads to

2.15
of of kK. T  of L5
3 9 3mu” T au mu. ot

of of | of
g eE o _ _
ot tu 8z m gu * Vil 0 2.16

2..16 is obtained simply.by intégl;ating 2.1 over 6 and 2. 16 by first
‘multiplying by Pl(cose ), then integré.ting over 0.

'i‘lhes'e-e;:iuat‘i’ons ai'e~coup1ed and involvé at least three time:
scales; the wave period, t_he mdmentum relaxation time 1/v: and the
energy relaxation time L/{¢ vm). What is. desired is an equation involving
only fg and only the eneArgyA rvelaxa,tion time scale. One way to do this
is outlined in Appendix A. What is involved is an asymptotic expansion
of fa and fl in;multiplé"time, snc_al‘es. The preceedure results in the

equation A29.

2.2 2
af, o1 5 e Ejvu of ey u3(f . g<*Tg of )
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where the temporal behavior is slow on either a wave period or collision
time scale. Eo is the amplitude of the appliéd field and w is the frequency.

If Eorvaries it is assumed to vary only on atime scale long compared with

l1/wor 1/v .
m
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CHAPTER III

- DERIVATION OF THE ENERGY RELAXATION EQUATION
o The éppropri'ate equation to use to derive the energy balance:
equation is

-

2 .2 .2

' T
afo - 1 5 € Eo vmu afo +Ev ﬁ‘3 PN Kg 3fo 3.1
ot 2112 su 3m2(v§1+ m2.) gu m 0o mu ju

where fo is the lowest order (in the spherical harmonic expansion)
spherically symmetric part of the electron distribution having time
dependence only on the scale long compared with the randomization
.time and with the radio frequency wave period; e and m are the charge
‘and mass of the electron; E0 is the amplitude of the radio frequency
wave; v is the velocity dependent collision frequency for momentum
transfer; w is the radio frequency; k is the Boltzman constant; and

Tg is the temperature of the neutral gas. Furthermore

@

vam 2 2
&= + - Z’EJ,HZNJ"'J, T+2 , 3.2
g J=0 '

for one molecular species; M is the molecular mass in cgs units;
NJ. is the density of molecules in thevJ‘i‘::-h' rofational state; (T‘J’ T+2 is
the cross section for the excitation of a molecule originally in state J
to state J + 2; EJ, T+2 is the rotational energy gained by the molecule
in such an excitation. The generalization to several molecular species is
obvious.

In deriving 3.1 it is assumed that spatial gradients can be

neglected so that energy lost by the electron gas is lost locally and not

through conduction or diffusion.
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The energy balance equation is obtained from 3.1 by multiplying

by'1l/2 muz,_and integrating over all velocity space. The term on the

left is just %ii = —c_;lt— (3/2 kT) where T is the electron temperature.

A. The Energy Source Term

The first term on the right is the rate of energy input by the wave,
that is, that fraction of the disturbing wave energy converted by collisions

into electron thermal energy. After integration by ’parts-this is

L © 3
dUE . 4% e EO “ LG 'afo 4 3
dt bm 2 2 gu
v +w
o m

"For-a particular model for L this can be written in terms of a semi-
conductor integral provided fo is Maxwellian [Burke and Hara (1963)].

As an example, for the model that will be used to derive G,

v = ozNu2 : : 3.4 -
m

where o is a constant and N is the neutral nuimber density. Substituting

3.4 intg 3.3 one obtains

du 5 EZ -
B o Vb C @/ 3.6
dt 4mw . m /2 m )
where_;;\m = __231_\Irr:<_T is the collision frequency for the most probable

speed.

B. Rotation Inelastic Collisions
.The second term on the right of 3.1 for rotation inelastic

collisions-ohly is
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411'15.2du 3.6

du 1ne1 == (- J ulf +°=8_2°

dt U J J+2KT J,J+2 0o ‘mu gu
" o .J=0 g -

The reasonable assumption is made that only inelastic’ collisions with -

N, and O, are important. Energy-level populations, NJ can be obtained

2 2
by following:Hertzberg (1950) as follows.

: Nz'haslfn'uclea.r spin:I = 1. The relative populations:of the total’
number. of states with'J even to that with-J odd is 2 to 1. Assuming

‘a.Boltzman distribution of energy-levels, take

(J+1)

-B
! g

N, j(even) = BN, (2T +1) e

COJ(T + 1)
: _ -Bl KTg
odd) = yN (2T + 1) e

Ny
‘where B, is the molecular nitrogen rotational constant, N, is the number
-density, and B and y are to be determined. By summing over-all J,
requiring the total sum to be Nl.. and the ratio of even to odd states

to-be 2 to 1, and replacing the sums by integrals

B,J(J + 1)
2B ' T TR TS .| 6: J. even
‘N,,. =N - a,. (2F +1) e a,. =
1J 1 (9K Tg lJ. 1J 3: JTiodd

_Oz has. nuclear spin I = 0 and all even J states are unpopulated.

A similar argument to that used for nitrogen leads to

B,J(J +1) | |
~ "ZBZ _KTE' L q: J odd
Nyy= Ny lox T, a,5(23+1) e " 227" Yo:Jeven [ 3-8
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Furthermore
' E; = BJ(J+1)
so that
-3,
J ) 2 B(4T+6). 9
Substituting 3.7, 3. 8 and 3.9 into 3.6
«©
. B |
1ne1 P .2 2 -B_J(J+1)/kT_
A E - ( kTg) zaPJ(Z_‘Hl)M“é) e P _ g
P=1 J=o0

[oo]

3 “ Ty afo
§4TrchJ 742% (fo + mu W)d’u 3.10
o)
This expreséion will be used to evaluate the inelastic loss rate by using

«'specific cross section models for O2 and NZ'

| The first‘model to be considered is that of Gerjuoy énd Sfein'(1955).
In th1s model the molecule is considered to be a point: Guadrupole dPolanz-
-ation effects, which distort the wave function of the molecule are considered
negligible. Also, the Born approximation is used on the electron wave

function, The cross section for excitation is

1/2
g by (T +2)(T+ 1) _ B(47+6)
J,J+.2_q.(2”3)(2”_1), 1 T 3.11
5 mat
81rQZa
q = —TI5 3.12

where Q is the molecular quadrupole moment, a, is the first Bohr radius
of the hydrogen atom, B is the molecular rotation constant, and —é— mii"zh"
is the incident electron energy.

This model seems to be quite good for ﬁN.;Z {Dalgarno (1962), Engelhardt
Phelps and Risk (1964), Phelps (1968)] in the energy range of interest in

-wave-interaction work, provided Q is chosen to fit the experimental cross
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section data, rather than as the actual quadrupole ‘moment, | At h"-igh‘.e'-:r
energies polarization-effects become more important [Sanfipson and
Mjolsness (1966)] and a more sophisticated model must be used. How-
ever, 1t seems simplest and sufficiently accur,ate_- for present work to.
use the GerJuOy and Stem model for n1troger1 at low energies.

The: 1ack of agreement betweerl theory and experlment at higher
energies has lead Sampson and Mjolsness (1966), Takayanaki and
Gel‘t-ma',r.l_(19l65)‘ and Geltman and Takayanaki (1966) to improve the nitrogen

-cross section model by including polarization effects through use of a .
non-spherically symmetric interaction potential, and by allowing for
Adistortion of the scattered electronvwave function Phelps (1968) indicates
,rhat”the Geltman and Takayanak1 model does. not fit expenmental data as
Well aslvthe..s1mpler GS model. The Sampson- MJolsness model however
agrees well in e Wide energy range with experlmental NZ cross sect1on |
values, Phelps‘(l968). |

The situation involving O2 ie not so. simple bec>a,use of the difficul‘ty
in rneasuring experimenfe,lly the O2 cross sections- at low energies, [Hake
and Phelps (1967),). Such measurements are needed.beoause they will be
-seen to critically affect the G-factor. The Gerjuoy and »Stein and Geltman
arrd 'fakaya.naki models for O2 give qﬁite different cross sections,
particularly in the range of energy in-which we are interested. The Gerjuoy

- and Stein model is almost certainly not.correct, but the Geltman and
Takayanaki model may also be held in doubt because of the poor agreement

. betweerl Geltman-Takayanaki theory and ;experiment for NZ’ [Phelps (1968)] .
Sampson and Mjolsness have.not done. c.alculatiorrs_for»OZ. Phelps '(19 68)

-indicates that experimental results are not able to resolve the conflict
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between. the Geltman and Takayanaki and Gerjuoy and Siein results. The
considevrableldifference betwéén cross sections for O2 i)fedicted by these
models.is an indication of the state of experimental work on OZ’ Becéuse
of this situation calculations of G will be done for both Geltman and
Takayanaki, and Gerjuoy and Stein models 'fo'.r 02. Eor' the Qerjugyugnd
Stein model take Q to have the value indicated by Dalgarno (1962) to be:l. 8
in the energy range 0.1 ev< Ec< 0.3 ev., The energy of interest to this
work is 42 x 10-‘2 ev. For the Geltman and Takayanakl model a reas>onably
good f1t to the curves in F1gure 5[ Geltman and Takayanak1 1966]

obtalned by tak1ng

2 72
4 2 o |z |
T yea = %1070 a0 140 | g -1 | 313

It should be noted that the curves in this figure can be altered by a different
choice of the parameter A, For this reason the cléseness of fit 3. 13
represents should not be t;;ken to-o- seriously, The.real vélueé'of the

crosé sections might be obtained by choosing the numefical factor in 3.13

as much as a factor of +3 with respect to the 4x 10°%;

C. Elastic Collisions

The second term on the right of 3.1 for elastic collisions only is

2

S kT 8f g
} ‘gmpu (fo+——g-a—)du314
—1. o o

It will turn out that this term is negligible compared with the inelastic
loss rate in the energy range of interest in this work. Nevertheless, it

can be carried along through the calculation of G for the sake of generality.
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After combining the results 3.3, 3.10, and 3.4 the energy balance

equation is

- 4TreZE 2
o

bm

dU
dt

@®

2

___) Z _a,pJ(ZJ + 1)(4J'+ 6)
J=o0 '

2
e

_-BPJ(J,+ 1)/kTg-§»

4o

J;

.15

3
._J+211 L}
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CHAPTER IV

DERIVATION OF G

A, Definition of Gv from the Energy Relaxation Equation

Gv is defined by assuming the energy balance equation can be

written.in the form

dU ,
—CIT-:—GV(U—Ug:)+S . o 4.1

where v is an appropriate collision frequency, U'gf is the thermal energy
. of the neutral gas, and S is the energy input rate,

It is obvious that 3. 15 does not have the form 4: lli'n thé general
case.  However, when the electroﬁ_ distribution functipn is VMaxi\v:vé_liiarvl-,
3.15 has the assumed form and at least for this case, Gvis defined.

When the Maxwellian assumption is justified, 3.15 leads.to -

2.2 - 2 2 -
au e E Vin ) 4mm (I_TE ' fe u4du
at T T2m . T2, - 2 M7 -m T/ ) Ympo
w +.Vm =1 P
P 4.2
> | © o -B_J(J + 1)
2N B_ / B_ 2 R
-(1_.Tg->z PP (E E ayy (2T +)(4T+6)%e TET ¢
T 9 kT » P | &
p=1 &1 g=o
@
. ’ - f 4 3dl
J TPy, 742 totme du
o
2

m 3/2 -mu _
fo= (Z-n'kT) e 2kT 4.3
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where T is the electron temperature. Corﬁparing 4.1 and 4. 2

2 ’ ®
' 4Tl'm 2 N\ v wddu
-m 3kT 'J)- mpo

-B J(J + 1)

> .
Z —24— (W)(T(TI‘_') Z (2J+ 1)(47T + 6) e T, S Tpr, J+2fo4“u du

B. Discus.sio'n' of Averé.ged.Collision.F‘L‘eqﬁencies

From 4.4 it is seen that G is defined when v is defined. There are
several avéraged éolliéionffrequencies that can be d'ef.inved for -é given
velocity dependenf f:o’llision.frequency mo'd'el. Three of thesé a_.i'e: '-the
averaged collisionvfrequlency, the energy-averaged collision frequency (or
the collision frequency for energy ‘transfe_r), and the most probable collision
frequency. Any of these can be used to define G and the resultant G's will
turn out to differ only by a constant factor from each other. But it seems
to be most natural to define G for the purposes of wave interaction in
terms of the particular collision frequency that is actually measured in
wave interaction experiments. This is the most probable collision
frequency.

To be specific take the collision frequency to be
vm(u‘) = Z : vmp(u‘)
p=1

mp®) = P' w

p
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3.7x lO—Zg(cm --sec) — 4.5

- R
1}

1.3 x 10—23(cm- sec)

. R
[\
"

where (1) refers to N'_2 and (2) to O;Z and where @

the data of Pack and Phelps (1961) and a, from the results of Mentzoni

has been computed from

(1968). " Define
2 :
aN =Z ajﬁNp 4.6
\ p=1 :
where N is the total density. Nl' + N5, then

Venla) = aNu? 4.7

With this model and using 4. 3 the averaged collision frequency is

(e8]

- N . 2. _ 3aNKT
v = 5 vm(u) fr 4m ldu = 4.8
The energy averaged collision frequency is
A l ‘ndu'2
v o= S‘ A v (w)f: dmulde = D oNKT 4.9
e 3 m o] m
S\ z kT
Finally the most probable collision frequency is
B = 2oNKT | 4.10
m m

In wave interaction experiments the 'cha.nge in the index of refraction
due to passage of the high power signal is measured. The index of
refraction: is relai':efi,to.-.the Plasma parameters through the Sen-Wyller
formula (1960). This contains only Cm In certain limits the formula

reduces to the simpler Appleton-Hartree formula (Sen and Wyller, 1960)
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and.iﬁ these limits the formula is in its simplest form in terms of either
vorwv. However, for the gen'e:'ré.l situation: vr:n is tfxé collision.frequency
measured,

| For the sake of completeness, when G is computed. it will be

computed from Gv for the above three collision frequencies, "

C. Evaluation of G for Two Cross Section Models

With the model given by 4.5, the first term in 4.4 is

2 ‘ .
10kT m N
m Z ; Mp -m apr

. Taking Gerjuoy-Stein models for both NZ‘ and 02, and using 3,11 and 3.12

in. 4. 4 it follows that

2
Gy = 20T Z-‘___Mm o N: 4.11

- B

“BIU 41

32 (2T _ ‘JPX 5 B
+ —7(}?11—) z Np(TET T Z oy (T HINT +2)(2T +3)e g K(RJ,T)

-1/2 -
- S - B (4T+0) T ap

K(P’J’T) = qp ) x. + —-E_,I-,_ e " X dx

: | 4.12

and the integral is

(P, 7 PP D (0P, 7)) I - 26(P, 1+ 2% (P, 3) K_(b(P, 7))

4,13
where

- B - * . . - -
b(P,J) = T{% (27 +3) 4. 14

and whei'e'-.Ki and 'K;) are Bessel functions of the third kind,
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It is a géod a.p;)roicirn.ation‘to replaée 4. 13 by unity, since Bp <<kT |
in the temperature range of interest, Further, because BAi/kT <<1
the J—%um in 4,11 can be replaced by an integral., When this is done
equation 5 in Mentzoni and Row (1963) for ‘NZ

similar approximation can be done for OZ' The result is

only, is obtained. A

: 2 _ 1/2° 2 B
_ 10kT m 16 [2kT [ Ep)
GvE T E M, -m apr'JrT(Trm) ZNp(kT)%_

p=1 p=1

Call 4.15 the GS model.

The second model is obtained by using a Gerjuoy-Stein model for
the N2 cross section, but a Geltman-Takayanaki model for O2 In this
case Gv can be written. in the form of 4,11, provided

4 2 (2T +1)(2T+3)

K(2,7,T) = 3x10 " " S

kT)z
B,

The analytical approximation for this model, derived in the same way as

4,15 is
2 ‘1/2 B
_ 10kT m . 16 [2kT 32,
=1 .
Call 4,17 thne GT model ‘ ' 417

The expression.for G is obtained by dividing 4. 11 or 4, 17 by the

appropriate collision. frequency. In Figure 1 are plotted G-factors as a

function of the electron temperature for the GS and the. GT models and for -

the three.collision frequerncies. . Theére are differences which occur

‘becaltse of the different collision frequéncies used.: :Buf theréiare also.-
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considerable differences between G's corresponding to the same collision
.,frequency but tb diffexre;nt Cross sec;:ion fngdé.»lvs, | |
'I.'hella.tter 'd'if-ferenéeé a.ré due solély_ to the Geltman-Takayanaki
modei for OZ‘ | Specifi'cally they arise becausg, in-fhe energy. range of
interest, the Gerjuoy-Stein cross section for ox;rgen-‘is practiéally B
independent of energy, whereas the Geltmah-Takayanaki mode‘lvvaries
as energy squared. This in.itself would not result in such a large
differe.nc-e-Were it not the case that the cross. sectionl_for O2 inv the GT
model begins to dominate -the cross. section for .Nz}in.the’ GS model,
It should be emphasized again that.the GT model has not been
~veri’fied.experimentally. Nevertheless, if it does turn out to be a better

model than -the GS model for O.,, then G, and therefore Gv, is 'larger '

2,

than has been assumed and measured in wave interaction work,
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‘s 6S] AVERAGE COLLISION FREQUENCY ‘
_ a GT) V=3aNkT/m
x|0-3. o GT ENERGY AVERAGED COLLlSION FREQUENCY
) 6SJ Ve=5aNkT/m

——=- GS). MOST PROBABLE COLLISION FREQUENCY
—-— 6T -Vm-ZQNkT/m

vlsk

| , | ' ‘ | L
100 ' 200 300 400
" T

FIGURE 1: lIonospheric G Factor for Two Cross Section Models and
Three Colhsmn Frequencies.
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CHAPTER:V

THE DISTRIBUTION FUNCTION.IN THE STEADY STATE

It was seen in Chapter IV that G-is defined only when equation 4. 1
can be written, This seems to rest on the assumption that fo is Max-
wellian. In this chapter some of the limiting forms of the actual

distribution function will be considered.

A. The General Solution

A Skharofsky, et al., (1966) derive an expression for the steady ‘
state electron distribution function. This can also be obtained by using -
equation 3.1 in the steady state limit. The solution, in the absence of a

static magnetic field, is

f = Ae™V 5.1
(o]
u’ .
w = 5 mudu
L 2 EZ_EOZ
m _ :

Throughout the following calculations take Vi tQ be

vy ::'(’J}.Nu.2 (sec_l) . | E 4.7
where, from 4.5 and 4,6 @ has the approximate value

a= 3.0 x 10-23 (sec - cm)

.and N lies'in.the range

5 3

3.8 x100%< N<6.5x 10" (em™3)

" between 80 km.. and 60 km. In the same height range the temperature

range.is.
186° < T < 243°
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Again define '{,‘mg as:in 4. 10, but replacing T with Tg.
Then ¥ - lies in the range
mg _ A

6.2 x 105

< v <1.5x10 (sec”h
in the height range 80 km. to 60 km,

Distribution functions will be evaluated for two models: one in
which £ is constant and the other in which § = ﬁ/uz, These may be thought
to correspond to the GT and GS models, respectively, discussediin
-Chapter IV, One can make an actual computation of § by using equation
3.2, or by defining G v-in terms. of §vm through the use of 3.1 and an

assumption that f_.is'Maxwellian. Using the former. method one gets: .

" for the GS model

2 ,
2mv: 8q:B N
‘m M_p - m mu 5.3
P=1 ' ’
and for the GT model
. 2 -4 2. 3
. 2my . 8q.B:N. 8x10 "a-"N,mu
£y o= ) mp 7l 1 1, o 2 5.4
. m M -m : mu B2 :
P .
P=1

In the energy range of interest in the D-region the elastic contribution

can be neglected. Now although £ as defined by 5.3 varies as. l/u3

and as defined by. 5.4 as a more complicated function, these can be fitted
fairly well by the above representation in the energy range of interest,
provided we take fp = 7,7 X 10"'.and ‘the constant value equal to 1. 07 x 10-2.

The-two models, when-used in 5, 2. lead to
x - dx

WGS-S 1+ 2 5.5
. ' o 1 +ax .
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% dx
T D
W =‘§ 1+ 5.6
GT -J 1+a,x2
.where
X = mu /ZkT 5.7
c=2eE 2 /(3m® ﬁw) . 5.8
b=e’E 2/(3méE KT &%) 5.9
o g : :
- A < 2
a=(9 /o 5.10
-2 ~
£=1.07x10 . 511
B=7.7x%x10 (m’/sec?) 512
5.8 and 5. 9 can be rewritten
c=4.04x 104 Py (n%%) 5.13
2.2 ' Co
b=.95x 10" P/(thg) - . 5.14

where P is in-fnegawatts, h in kilometers, and f in éycles‘per second,  In
6 :

.interaction work at Penn State f = 4.5 x 10~ and P =.15 for which
4.8%107% <a< .28
.047. < c<.084 — '5.15
.060 < b< . 081
in the height range 80 to »60 kilometers,
- All of .the values in 5, .1'5 -ca.n be increased two orders of magni_tude
by decreasing f to 1 x ,106 and. by increasing P to 150 megawatts, It is of
interest in wave interaction work to kn’ow whether results obtained from

the energy balance equation 4.1 are meaningful for a fairly wide range of

frequencies and powers. In other words, are conditions easily arranged -



-29-

so that the energy balance equation 4. 1 must be modified? To at least
partially answer this question we want to determine whether 4.1 is modified

in any essential way when the distribution is given by 5.1 and. 5. 2.

B. . Solution When¢ is: Constant

5.6 can be integrated to give

/2

V2 sy 12 o ) 5.16

(1%B) -1 al/

- x - ba” n~ Yl Sy !

Vot
Distrib'ut-ion function averages cannot be evaluated analytically using 5. 1.6.
For this reason consider limiting cases in which 5. 16 can b“eb approximated
by a simpler dependence on x. First let the argument of ’can'_1 be large.
Then

i - -1/2 -1 -1
'1'/2(1'¥b)" / + x + ba 1x -%

-2, ... =3
GT > a b(l+b) x 5.17

When b/a <<1 and a >>1 this can be replaced by

~ -1 -1 '
K WGT = x + ba x 5.18

This corresponds to a very high collision frequency or low operating frequency.
. The second case is that where the argument of ta,n-1 is.small. Then
1 1

- - 3 )
Wop=x(1+b)  +xabx (1+D) 5,19

It is assumed here that the p'ealk in the speed distribution lies near x = 1,
so we are interested in approximations valid in this region.,  However,
-when b-is of order 100 .the électron temperature:is on the order of 100 times
the neutral temperature. | V'&_’.henuthis-is the case the second term in. 5. 19:is
the significant one. However, such values of b are practically unattainable.
Then for all practical situations in which the approximation 5, 19 is valid,
or when 31/2 <1

1

W =x(1+D) 5,20
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which.is a Maxwellian. with temperature:

T="T (1l +Db)
g

. C. Solution When £ = (3/\}2.

_Again 5.5 can be iﬁtegrated exactly. but.the result cannot be used
to evaluate dis_ti‘ibution.fu_nction averages. Consider first the case in
-which a>>1 | |

> - S%in ¢
Weog T x ;a;n (1 +ax/c) : - 5.2l

This again applies for high collision frequencies or low operating

-frequencies. The other case is.that in.which a <<1

1. ‘ .
WGS =.-C—,.1.r,1>(1 + cx) . 5.22

This applies to most of the D-region high wave frequencies for values of

"¢ not above about 10,
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CHAPTER VI

EFFECT ON ENERGY RELAXATION BY USING NON-MAXWELLIAN
DISTRIBUTION FUNCTIONS

The definition of Gv (4. 4) obtained from (4. 1) and 3. 15 rests on the
alssumption that fo is Maxweliian. It was see;l in Chapter V that the
distribution does not have the %orm of a Maxwellian in general. Howéver,
for small applied fields it is natural to expect that the actual diétrii)ution
- would be nearly Maxwellian and that (4. 2) and (4. 4) are good approximations.
In this chapter the energy relaxation equation will be obtained uging
approximations to the actual distributions' that converge uniformly to a
- Maxwellian-as the applied field becomes small. A comparison will be made

with (4. 2).

A. The Energy Balance Equation for Two Models’

The energy balance equation that follows from 3. I with 3.2 is

1/2
qu KTl ERT 3/ PR [5l2y o, R 52 a_
3= mg ‘S‘ > {———>l4n ‘d"'dx+5‘§x 4m £+ dL d
A . ] s 3mow kTg l+ax * . x

(o]

6.1

where :all constants are defined in Chapter V and where the following’

change of variables has been made
2
x = mu /ZkTg'.' ' 6.2

Th‘is"e_quation is identical with 3,15 when 3, 2 is used, Wifh the approxi-

mations, discussed in Chapter V, to the Geltman and Takayanaki and to’

the Gerjuoy and Stein models 6. 1 becomes
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1/2 w a0} 4
kT wa ZkT 3/2 5/2 df : . df
—dU = - & g ( \ S‘ bx 4 — dX+S‘ 5/2 41 =(j;o+ —"‘O) dx
dt ‘-‘»2 : 2 - dx A7 dx}
1 +ax S R
6.3

for the model where O2 cross section is Geltman and Takayanaki and the
N2 cross section is Gerjuoy and Stein where £ and b are given by 5. 11 and

5. 9‘ respectively. ‘Call this model GT. Similarly 6.1 becomes*

. © , ._
lfj’gga ) ( kT 3/2 o 3/2 &t +§ e

3T T2 ZkT 7= 4m grdx

P
1+a o8 ‘O

6.4.

e} '
= ) dx

f.orr t‘he model whei'.e\both NZ and O2 cross sections are Gerjuo‘y;Ste‘in ‘With
13. and ¢ given by 5,12 and 5. 8 respectively. Call this model GS. In the
steady state ‘6.’ 3 ;aind 6_. 4 are sati‘s'fie'd by distr_ibuti_on,s derived from 5, 6
and 5. 5 r.espé'ctively‘.‘ Therefore, whén,discussing the effects of various
non—Maxwellién distributions 5.5 and 5, 6 should not be used in.non—stéady
state .conditioxbls,i since they satisfy the steady state parts of 6.. 3 and 6.4 _
aiofl‘é: ‘Wh‘at will be done is to use dist‘ribu-tions deri\‘r'e.dvfrom e.x.pressi.c}‘ns

jdentical in form to 5.5 and 5. 6, but with constants different from ¢, b, a.

B Compar1son of Relaxation Equations Derived U31ng a Maxwellian

with Those Derlved Using Non- Maxwellian Distributions,

Consider first the GT model and 6. 3. When a <<1, which is satisfied
‘at a frequéncy of 4 5 MHz throughouti the D-region above 60 km. the
distribution is M;xwe_llian, as. is‘implied by 5.20. The next higher order
term in the expansion of 5.16 becomes important only when b is sevéral
orders vof magnitude larger than indicated in 5. 15. It is therefore clear

that at the presently used frequency and power, the electron distribution
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is' Maxwellian and.the energy balance equation has the assumed form
4.1 provided the GT modél is correct.

When a->">'1v.th-e. simplest approximation to the distribution is derived
from 5.18. But the. result does not coverge uniformly for all x to &
Maxwellian. for small 2 If a better approximation is used then the
required integrals in 6.3 cannot be performed.in closed form. The
condition a<<1] applies only below 60 km, or when a lower operating
frequency-is used.

Consider ﬁext the GS model and 6.4, When a<<l the distribution

'is obtained from 5.22 and has the form

0

3/2 -1
fo = _Zn-kTv') 3/2 -—L—HY L+ yx) Yoo
R Ny~ '- 3/2)
6.5
Defining the temperature by
-g—kT = -z-'rrii'i' o 6.6
and using 6.5 leads to
_=_—5-(1-T/T) 6.7

Using 6.5 and 6. 7 and carrying out the integrations.in 6.4 one obtains
TY[1. s
T T
gry
6.8

which is identical to the result obtained by using a. Maxwellian in 6, 4.

1/2
au _  KTgwa- 1 15 T
I 2 zm Tzl

+ 3
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-Therefore the balance equation has the assumed form 4.1 and Gv is the
same whether evaluated using a Maxwellian or 6.5. These conclusions
follow if the GS model is correct and provided ¢ is not larger than about. .

10.

When a>>1 then the distribution is obtained from 5,21 and has the

foo= 1 [ m 3/2 e ¥ (x: +a)a 6.9 |
0" Zm |Z&T,| =

_ - vg"xllze-x(oz+x)0[dx '

o ' '

form

»'./.I
where the integral can be expressed in terms of a Whittaker function
(Abramowitz and Stegun, 1964). Defining the temperature as.in 6.6, one

finds

x3/2 e_X(0z+ x)adx

8love
CC—g

. 2
T/Tg = 3 -
Exllze-x(a+fx)adx

o}

Using 6.4 it follows that

@ :
kT wa .. Sfx_l/ze-x(d+;<)adx
B s} :

Tp)fs

o}

au _
at - T2

1/2
o ‘g"xl/ze_x(a% x)a_dx
o

S 6,11

"The evaluation of the integrals results in expressions which do not
reduce 6. 11 to the form of 4. 1. However, considering the limit that

c/a<<l and a<<l, by expanding the Whittaker functions in powers of a

one can show

1ne

T/T: l+'%a " 6.12
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plus higher order terms and
1 c _ ,
au _ Tg92 (E - @
H— = _2___ , 6.13
7’+a' . .

accurate to first order in a. This gives an energy balance equation

kT wa "
dU - ..Ag('.\ . ﬁm \
I3 T T2 2T, I[—(z 4a) - 2"‘] 6. 14

with a given by 6,12, The equivalent equation.for a Maxwelliaﬁ derived

from 6.4 is

kT wa 1/2 T
W [ (R )] e
o g B
6.14 and 6. 15 are identical to lowest order in _T’IE - 1. But they begin
to differ significantly, particularly in the energy input term, when a~'1
which._is essentially the same as c/a ~1. Therefore the balance equation
has the assumed form 4.1 again provided c/a<<l and the GS model is

correct. The inequality would be satisfied for powers up to 100 times

that presently used.

C. Discussion

It can-be seen. that the assumption that fé) is Maxwellian for the
purpose of obtaining the energy balance equation is well justified at least
in the cases considered. Apparently this is so because the form 4.1 is
somewhat insensitive tb the ex;ct shape of the electron distribution. For

both the GS and GT models the distribution can be taken Maxwellian

whenever the collision frequency is small compared with the wave frequency ‘
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and the operating power is not more than 100 times: that now V‘uséd.. . The
distribution.can also be taken M_a.xwe_llian, ‘at least for the GS model, when
the coliision frequency-is large compared with thewave frequency and.the
operating power-is not more than 100 times that now used.

: I£ shbuld be noted that ¢ ;’.ﬁd._b a,re-.incfeased as the éperating
frequency is decreased. The dis_,tribﬁtion might be sufficiently
~non-Maxwellian, if -thé:wave ffeéu.ency were 450 kHZ and.if the operating
power were the same! as now used, that 4.1 is notrjustified. But at such
low 'ol_;).erating_frequencies static fﬁaghefic effe:cts most certairily_ would

.have to be included in a theoretical analysis.
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CHAPTER VI

- DISCUSSION AND CONCLUSIONS

A kinetic theory derivation of the energy balance-equation (1. 1)
appropriate to D-region wave interaction studies - has been reviewed.
The energy balance equation has the assumed form 4,1 and 4, 2 whenever
the electron velocity distribution.is: Maxwellian, Then Gv is defined'in
4.4 and G is defined when an appropriate collision frequency is defined.

Two models for G have been discussed, based ontwo theoretical

models for fhe interaction between low energy electrons and molecular
oxygen and molecular nitrogen., The first (GS), is based on Gerjuoy-
Stein ._créss sections for bo’ch-N2 -and OZ and has_been considered by .
Mentzoni.(In this case Gv is given by 4,13 and 4. 14 or by 4.17). The -
Gerjuoy-Stein model for NZ’ although very simple, is almost certainly
“reasonably accurate in the energy range of interest here { Phelps;‘(1968)].
However, using the Gerjuoy-Stein model for O, may not be- justified

[ Phelps (1968)]. In the GS model, G has very nearly T-3/2

dependence,
Furthermore, G depends.on neutral particle densities only through the
percentage compositions, which are essentially constant throughout the
D-region., Thus, G reall-y depends. only on the electron temperature and
only Vefy;'weakly on the neutral temperature.

The second model (GT) is based on Gerjuoy,-Stein cross sections

-for NZ’ but on' Geltman-Takayanaki cross sections for O In this case

2"
Gv-is givén by the approximation 4.18, Through the electron temperature
-range-of interest (Fig. 1) G is practically-a constant and is about twice

the value used and.obtained.inrwave’_interac_tion-st_udies[ Kissick'(l970)] .
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When. better experimental data on O2 cross sections become
available, and if the cross sections are neither of the Gerjuoy-Stein
or Geltman-Takayanaki forms, then 4.4 can be used to obtain the
corresponding Gv. |

‘It is seen from F1g ifch'at the apparent temperatdr’e- dependence’
of G ( ~~-T'5'/2) obtained from wave-interaction studies [Kissick (1970)] is
not explained on the basis of the two models discussed here. In.order to
have this temperature dependence either the N2 or the O2 cross section,
or both, would have to be inversely proportional to the eléctron—energy.
This would seem to be very unlikely,

Approxima‘;e-.limits have been determined on the practical use of
the energy balance equation in the form 4,1, and therefore on the definition
of G using this equation. | This has been done by using approximations to
the steady state form for the actual electron distribution function in.3, 1
in place of a Maxwellian, . The resulting equation is compared with the
energy balance equation obtained using a Maxwellian distribution.,

This comparison was poésible-in,_ two limiting cases. First is the
-,lirﬁit a<<l1, where (a) is defined by 5. 10. At the wave frequency now used
at Penn State, this is satisfied throughout the range of 60 to 80 kilometers.
Then, even though the actual distribution is not Maxwellian for the GS
model, the energy balance equation is the same as though it were Max-
wellian. In the GT model the actual distribution is Maxweéllian in the
above limit. Thus, provided the incid‘ent"wave power is not more than 100
times that now used, the energy balance equation has the form 4.1 to zero
order-in (a).

- The other limiting case is that where (a>>1 and c/a<<). Now

c/a <<1 is satisfied throughout the height rangf'? 60 to 80 kilometers with
B
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the present operating frequency and power, V Thi_s ratio is independent of
frequency. The above conditions can be thought to apply at the present or
lower operating ppwei‘, but at lower frequency (<500« c). For vthe GS
model 'the energy balance equation ‘has the form 4,1, even when tiqe actual
distribution is not Maxwellian, to lowest order in c/a. Howevef, when
c/ais of order one this is no longer sov.

At the present operating frequency it can be concluded. that the
energy, balance equation i‘s of the form 4.1 and G is wéll defined providea

the power used is not greater than about 100 times that now used.
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~ 'APPENDIX A o
DECOUPLING THE PERTURBATION EQUATIONS
" BY AN ASYMPTOTIC EXPANSION

Begin with the equations

of 2eE._ & (t) . kT o0f,7

- To _ 1 - o] o 2 3, g - )

at - ZVZ ERY [ 3m - v fl + vav (f0+ mv 0 3} Al
af

eE_¢(t) Bf_
Bt_:-vmfl+" - v ‘ A2

Define the dimensionless constants and variables

2kT \ -1/2
( g)

u =\— v
m

T = wt A3
a=eE [(2mkT wz) 1/2
© g
g,(T) = £ (1)
gl(T) = fl(t)
Then Al and A 2 become
¢, 1 209 (1) -2 +§"m Ww3g + W@ 28 Aa
3t 5.2 Bu 3 g T T WE TTZT Thw
agl__vrn + a ()?go
ot | Tw g] ¢ (1) =3 A5
Assume two distinct time scales [ Cole (1968)] T and Ul where Ty is
long and T_ is short. Assume further that '

T=T(7, ™) A b
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0T ‘ o T
. ERR © B -1 _ -
such .that 5 =.1 and 57— ¢ where € is a small parameter.
T, is associated with § ym/w and T _ with vm/ w. Accordingly
assume

Ev_Jw= el (v) a7

vm/ w =N (V) - A8

where n and L are of order 1. Now assume the expansion

i i
gozz_go T e A9
_ i1 ' | AL
g % g1 ¢ -

to. be valid-in an asymptotic sense [ Cole, 1968] . - -

Substitution of A 7 - A 10.in A 4 and A 5 leads to

9 go ‘ T
o _1 ) (acb(o) 2 o All

5T, T oa \ T S -3
(o] u
8 glo o ' '&gP.
T—T = - gl + Q———-—oau A 12

to lowest order in ¢, where ¢ has been taken to depend only on the

fast time scale for simplicity. To first-order in e

o 1 ) o
9 Eo - 9 €o o (To) .9 2 1 + 1. 0 ¢ 3 o u2 3go
oT. t 57 - 2 P u (u g1 ) Z ou (u g, *7 5 )
6 o) 3u 2u . !
25° o gl | 9g 1
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Now ‘thelzs\e.expanéions stillvccl)ntain both.time scales. Whét~ \.Nill be doﬁe
-is to take averl'Aages over the short time sc?ale.'rrb. - But thi's. requires |
solving for the shc_irt time dependence.. However, All and A 12 are no
more easily solved than before. Therefore expand in the small
parameter o,

o 2
g5 =agtoea, taa

1 2

Als

O 2
g1 -b-o +a-l.)1+0zb2

The‘:infl_tial conditions are that fg is Maxwellian with temperature: T
.and. fl = o and @ = o at time t = o. . Thus a.o is initiallyy Maxwellian and

. b is zero. To lowest order in a,All and A 12 give -
o

57— -° Al6

- Thus a_ can depend only, on the lohg.timé scale, . To first order in @

8al
: =0 Al7

9 T

i
To

which implies that
. Ba
b E g Al8

where Fl is an arbitrary function having no short time dependence and

where ¢ (T(r)) = sint;. To-second order in ‘@

9a, sinT

8 2
9T, 2 du (u'b,) Al9
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.-0b - O0a

2
3T8

_ L 1
= - -r,bz + sinTg o

which can be integrated, solving for a,, bZ' Expand A 13 and A 14 by
taking
=c_+ & + 022
g5 =c, t acy <,
AZ20
+ o%d

—d(()a+'oed1

633
ot i
|

2

To lowest order in @, Al3 and A 14 give

o By, ) £ (a3 +u2 ?ao) A2l
T oT - 2 Ou [ % T 7 TBu ‘
o 2u
da
a_TO = ..'r]do A22

By Al(),aO is independent of T Integrating A2l on T it is seen that
. in order that S be finite it must be required that

da
o
81'1
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fo) .
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dc

o _
and 31-_0_0 AZ4

To reconstruct A4 and A5 with the short time scale absent expand

each term using the results A6 to A24 and average over T Assume

dz << ¢ . To lowest order the first term in A4 is
o _ -0 .
R Eox A25
1
and next
_ o n 8ao
d) (To)gl = 7‘ ..Z ﬁau .A2-6
1+ 7

and finally
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Therefore to lowest order’
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where r refers only to the long time scale. Substituting the:original:.. "

variables
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