7,552 research outputs found
Recommended from our members
Regulation of Wages and Hours Prior to 1938
Direct numerical simulations are performed to investigate the transient upstream propagation (flashback) of premixed hydrogen–air flames in the boundary layer of a fully developed turbulent channel flow. Results show that the well-known near-wall velocity fluctuations pattern found in turbulent boundary layers triggers wrinkling of the initially flat flame sheet as it starts propagating against the main flow direction, and that the structure of the characteristic streaks of the turbulent boundary layer ultimately has an important impact on the resulting flame shape and on its propagation mechanism. It is observed that the leading edges of the upstream-propagating premixed flame are always located in the near-wall region of the channel and assume the shape of several smooth, curved bulges propagating upstream side by side in the spanwise direction and convex towards the reactant side of the flame. These leading-edge flame bulges are separated by thin regions of spiky flame cusps pointing towards the product side at the trailing edges of the flame. Analysis of the instantaneous velocity fields clearly reveals the existence, on the reactant side of the flame sheet, of backflow pockets that extend well above the wall-quenching distance. There is a strong correspondence between each of the backflow pockets and a leading edge convex flame bulge. Likewise, high-speed streaks of fast flowing fluid are found to be always colocated with the spiky flame cusps pointing towards the product side of the flame. It is suggested that the origin of the formation of the backflow pockets, along with the subsequent mutual feedback mechanism, is due to the interaction of the approaching streaky turbulent flow pattern with the Darrieus–Landau hydrodynamic instability and pressure fluctuations triggered by the flame sheet. Moreover, the presence of the backflow pockets, coupled with the associated hydrodynamic instability and pressure–flow field interaction, greatly facilitate flame propagation in turbulent boundary layers and ultimately results in high flashback velocities that increase proportionately with pressure
Time resolution below 100 ps for the SciTil detector of PANDA employing SiPM
The barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR in
Darmstadt is planned as a scintillator tile hodoscope (SciTil) using 8000 small
scintillator tiles. It will provide fast event timing for a software trigger in
the otherwise trigger-less data acquisition scheme of PANDA, relative timing in
a multiple track event topology as well as additional particle identification
in the low momentum region. The goal is to achieve a time resolution of sigma ~
100 ps. We have conducted measurements using organic scintillators coupled to
Silicon Photomultipliers (SiPM). The results are encouraging such that we are
confident to reach the required time resolution.Comment: 10 pages, 7 figure
Discovery of pulsations in the X-ray transient 4U 1901+03
We describe observations of the 2003 outburst of the hard-spectrum X-ray
transient 4U 1901+03 with the Rossi X-ray Timing Explorer. The outburst was
first detected in 2003 February by the All-Sky Monitor, and reached a peak
2.5-25 keV flux of 8x10^-9 ergs/cm^2/s (around 240 mCrab). The only other known
outburst occurred 32.2 yr earlier, likely the longest presently known
recurrence time for any X-ray transient. Proportional Counter Array (PCA)
observations over the 5-month duration of the 2003 outburst revealed a 2.763 s
pulsar in a 22.58 d orbit. The detection of pulsations down to a flux of
3x10^-11 ergs/cm^2/s (2.5-25 keV), along with the inferred long-term accretion
rate of 8.1x10^-11 M_sun/yr (assuming a distance of 10 kpc) suggests that the
surface magnetic field strength is below ~5x10^11 G. The corresponding
cyclotron energy is thus below 4 keV, consistent with the non-detection of
resonance features at high energies. Although we could not unambiguously
identify the optical counterpart, the lack of a bright IR candidate within the
1' RXTE error circle rules out a supergiant mass donor. The neutron star in 4U
1901+03 probably accretes from the wind of a main-sequence O-B star, like most
other high-mass binary X-ray pulsars. The almost circular orbit e=0.036
confirms the system's membership in a growing class of wide, low-eccentricity
systems in which the neutron stars may have received much smaller kicks as a
result of their natal supernova explosions.Comment: 7 pages, 6 figures, accepted by ApJ. Very minor addition in response
to referee's comment; updated author affiliatio
Phase separation due to quantum mechanical correlations
Can phase separation be induced by strong electron correlations? We present a
theorem that affirmatively answers this question in the Falicov-Kimball model
away from half-filling, for any dimension. In the ground state the itinerant
electrons are spatially separated from the classical particles.Comment: 4 pages, 1 figure. Note: text and figure unchanged, title was
misspelle
Influence of peptidylarginine deiminase type 4 genotype and shared epitope on clinical characteristics and autoantibody profile of rheumatoid arthritis.
Background: Recent evidence suggests that distinction
of subsets of rheumatoid arthritis (RA) depending on anticyclic
citrullinated peptide antibody (anti-CCP) status may
be helpful in distinguishing distinct aetiopathologies and in
predicting the course of disease. HLA-DRB1 shared
epitope (SE) and peptidylarginine deiminase type 4
(PADI4) genotype, both of which have been implicated in
anti-CCP generation, are assumed to be associated with
RA.
Objectives: To elucidate whether PADI4 affects the
clinical characteristics of RA, and whether it would
modulate the effect of anti-CCPs on clinical course. The
combined effect of SE and PADI4 on autoantibody profile
was also analysed.
Methods: 373 patients with RA were studied. SE,
padi4_94C.T, rheumatoid factor, anti-CCPs and antinuclear
antibodies (ANAs) were determined. Disease
severity was characterised by cumulative therapy
intensity classified into ordinal categories (CTI-1 to CTI-3)
and by Steinbrocker score.
Results: CTI was significantly associated with disease
duration, erosive disease, disease activity score (DAS) 28
and anti-CCPs. The association of anti-CCPs with CTI was
considerably influenced by padi4_94C.T genotype (C/C:
ORadj=0.93, padj=0.92; C/T: ORadj=2.92,
padj=0.093; T/T: ORadj=15.3, padj=0.002). Carriage of
padi4_94T exhibited a significant trend towards higher
Steinbrocker scores in univariate and multivariate
analyses. An association of padi4_94C.T with ANAs
was observed, with noteworthy differences depending on
SE status (SE2: ORadj=6.20, padj,0.04; SE+:
ORadj=0.36, padj=0.02) and significant heterogeneity
between the two SE strata (p=0.006).
Conclusions: PADI4 genotype in combination with anti-
CCPs and SE modulates clinical and serological characteristics
of RA
Phase Rotation, Cooling And Acceleration Of Muon Beams: A Comparison Of Different Approaches
Experimental and theoretical activities are underway at CERN with the aim of
examining the feasibility of a very-high-flux neutrino source. In the present
scheme, a high-power proton beam (some 4 MW) bombards a target where pions are
produced. The pions are collected and decay to muons under controlled optical
condition. The muons are cooled and accelerated to a final energy of 50 GeV
before being injected into a decay ring where they decay under well-defined
conditions of energy and emittance.
We present the most challenging parts of the whole scenario, the muon
capture, the ionisation-cooling and the first stage of the muon acceleration.
Different schemes, their performance and the technical challenges are compared.Comment: LINAC 2000 CONFERENCE, paper ID No. THC1
EarthN: A new Earth System Nitrogen Model
The amount of nitrogen in the atmosphere, oceans, crust, and mantle have
important ramifications for Earth's biologic and geologic history. Despite this
importance, the history and cycling of nitrogen in the Earth system is poorly
constrained over time. For example, various models and proxies contrastingly
support atmospheric mass stasis, net outgassing, or net ingassing over time. In
addition, the amount available to and processing of nitrogen by organisms is
intricately linked with and provides feedbacks on oxygen and nutrient cycles.
To investigate the Earth system nitrogen cycle over geologic history, we have
constructed a new nitrogen cycle model: EarthN. This model is driven by mantle
cooling, links biologic nitrogen cycling to phosphate and oxygen, and
incorporates geologic and biologic fluxes. Model output is consistent with
large (2-4x) changes in atmospheric mass over time, typically indicating
atmospheric drawdown and nitrogen sequestration into the mantle and continental
crust. Critical controls on nitrogen distribution include mantle cooling
history, weathering, and the total Bulk Silicate Earth+atmosphere nitrogen
budget. Linking the nitrogen cycle to phosphorous and oxygen levels, instead of
carbon as has been previously done, provides new and more dynamic insight into
the history of nitrogen on the planet.Comment: 36 pages, 12 figure
- …