311 research outputs found

    3D IC optimal layout design. A parallel and distributed topological approach

    Full text link
    The task of 3D ICs layout design involves the assembly of millions of components taking into account many different requirements and constraints such as topological, wiring or manufacturability ones. It is a NP-hard problem that requires new non-deterministic and heuristic algorithms. Considering the time complexity, the commonly applied Fiduccia-Mattheyses partitioning algorithm is superior to any other local search method. Nevertheless, it can often miss to reach a quasi-optimal solution in 3D spaces. The presented approach uses an original 3D layout graph partitioning heuristics implemented with use of the extremal optimization method. The goal is to minimize the total wire-length in the chip. In order to improve the time complexity a parallel and distributed Java implementation is applied. Inside one Java Virtual Machine separate optimization algorithms are executed by independent threads. The work may also be shared among different machines by means of The Java Remote Method Invocation system.Comment: 26 pages, 9 figure

    Multifractal structure of turbulence in the magnetospheric cusp

    Get PDF
    Magnetospheric cusps are regions which are characterized by highly turbulent plasma. We have used Polar magnetic field data to study the structure of turbulence in the cusp region. The wavelet transform modulus maxima method (WTMM) has been applied to estimate the scaling exponent of the partition function and singularity spectra. Their features are similar to those found in the nonlinear multifractal systems. We have found that the scaling exponent does not allow one to conclude which intermittency model fits the experiment better. However, the singularity spectra reveal that different models can be ascribed to turbulence observed under various IMF conditions. For northward IMF conditions the turbulence is consistent with the multifractal <i>p</i>-model of fully developed fluid turbulence. For southward IMF experimental data agree with the model of non-fully developed Kolmogorov-like fluid turbulence

    Enrichment of cryoconite hole anaerobes: implications for the subglacial microbiome

    Get PDF
    Glaciers have recently been recognized as ecosystems, comprised of several distinct habitats: a sunlit and oxygenated glacial surface, glacial ice and a dark, mostly anoxic glacial bed. Surface meltwaters annually flood the subglacial sediments by means of drainage channels. Glacial surfaces host aquatic microhabitats called cryoconite holes, regarded as “hot spots” of microbial abundance and activity, largely contributing to the meltwaters’ bacterial diversity. This study presents an investigation of cryoconite hole anaerobes and discusses their possible impact on subglacial microbial communities, combining 16S rRNA gene fragment amplicon sequencing and the traditional enrichment culture technique. Cryoconite hole sediment harbored bacteria belonging mainly to the Proteobacteria (21%), Bacteroidetes (16%), Actinobacteria (14%) and Planctomycetes (6%) phyla. An 8 week incubation of those sediments in Postgate C medium for sulfate reducers in air tight bottles, emulating subglacial conditions, eliminated a great majority of dominant taxa, leading to enrichment of the Firmicutes (62%), Proteobacteria (14%) and Bacteroidetes (13%), which consisted of anaerobic genera like Clostridium, Psychrosinus, Paludibacter and Acetobacterium. Enrichment of Pseudomonas spp. also occurred, suggesting it played a role as a dominant oxygen scavenger, providing a possible scenario for anaerobic niche establishment in subglacial habitats. To our knowledge this is the first paper to provide insight into the diversity of the anaerobic part of the cryoconite hole microbial community and its potential to contribute to matter turnover in anoxic, subglacial sites

    A smelly business: microbiology of Adélie penguin guano (Point Thomas rookery, Antarctica)

    Get PDF
    Adélie penguins (Pygoscelis adeliae) are the most numerous flightless bird group breeding in coastal areas of Maritime and Continental Antarctica. Their activity leaves a mark on the land in the form of large guano deposits. This guano is an important nutrient source for terrestrial habitats of ice-free Antarctic areas, most notably by being the source of ammonia vapors which feed the surrounding grass, lichen and algae communities. Although investigated by researchers, the fate of the guano-associated microbial community and its role in decomposition processes remain vague. Therefore, by employing several direct community assessment methods combined with a broad culture-based approach we provide data on bacterial numbers, their activity and taxonomic affiliation in recently deposited and decayed Adélie penguin guano sampled at the Point Thomas rookery in Maritime Antarctica (King George Island). Our research indicates that recently deposited guano harbored mostly bacteria of penguin gut origin, presumably inactive in cold rookery settings. This material was rich in mesophilic enzymes active also at low temperatures, likely mediating early stage decomposition. Fresh guano colonization by environmental bacteria was minor, accomplished mostly by ammonia scavenging Jeotgalibaca sp. cells. Decayed guano contained 10-fold higher bacterial numbers with cold-active enzymes dominating the samples. Guano was colonized by uric-acid degrading and lipolytic Psychrobacter spp. and proteolytic Chryseobacterium sp. among others. Several spore-forming bacteria of penguin gut origin persisted in highly decomposed material, most notably uric-acid fermenting members of the Gottschalkiaceae family

    Plasmids of Psychrotolerant Polaromonas spp. Isolated From Arctic and Antarctic Glaciers – Diversity and Role in Adaptation to Polar Environments

    Get PDF
    Cold-active bacteria of the genus Polaromonas (class Betaproteobacteria) are important components of glacial microbiomes. In this study, extrachromosomal replicons of 26 psychrotolerant Polaromonas strains, isolated from Arctic and Antarctic glaciers, were identified, sequenced, and characterized. The plasmidome of these strains consists of 13 replicons, ranging in size from 3,378 to 101,077 bp. In silico sequence analyses identified the conserved backbones of these plasmids, composed of genes required for plasmid replication, stable maintenance, and conjugal transfer. Host range analysis revealed that all of the identified plasmids are narrow-host-range replicons, only able to replicate in bacteria of closely related genera (Polaromonas and Variovorax) of the Comamonadaceae family. Special attention was paid to the identification of plasmid auxiliary genetic information, which may contribute to the adaptation of bacteria to environmental conditions occurring in glaciers. Detailed analysis revealed the presence of genes encoding proteins potentially involved in (i) protection against reactive oxygen species, ultraviolet radiation, and low temperatures; (ii) transport and metabolism of organic compounds; (iii) transport of metal ions; and (iv) resistance to heavy metals. Some of the plasmids also carry genes required for the molecular assembly of iron–sulfur [Fe-S] clusters. Functional analysis of the predicted heavy metal resistance determinants demonstrated that their activity varies, depending on the host strain. This study provides the first molecular insight into the mobile DNA of Polaromonas spp. inhabiting polar glaciers. It has generated valuable data on the structure and properties of a pool of plasmids and highlighted their role in the biology of psychrotolerant Polaromonas strains and their adaptation to the environmental conditions of Arctic and Antarctic glaciers

    Microbial community changes along the Ecology Glacier ablation zone (King George Island, Antarctica)

    Get PDF
    In recent years glacial surfaces have received much attention as microbial habitats of diverse photoautotrophic and heterotrophic cells. Supraglacial ecosystems are annually covered and uncovered by snow. The aim of this study was to investigate the microbial community response to changing environmental conditions in a transect following the receding snow line on the surface of Ecology Glacier (King George Island, Antarctica). Parameters of surface ice and cryoconite holes included chemical composition of ice and sediment, Bacteria diversity by denaturating gradient gel electrophoresis (DGGE), microbial functional diversity (Biolog Ecoplates), and microbial counts (epifluorescence microscopy, colony forming units - CFU). Data demonstrated profound differences between surface ice and cryoconite holes. Changing environmental factors along the transect influenced composition and abundance of the microbiocenosis in both habitat types. Several parameters correlated positively with distance from the glacier edge, including the cell morphotype Shannon Index, chlorophyll a, nitrogen and seston concentrations. Suspended solids content positively correlated with microbial 2 abundance and diversity. Nitrogen and phosphorus were limiting factors of microbial growth as amounts of organic nitrogen and phosphorus positively correlated with the cell numbers, fission rates and photoautotroph contribution. Our findings indicate that microbial community shows a response in terms of abundance and diversity to exposure of the glacial surface as snow-cover melts. To our knowledge this is the first study to recognize a microbial development pattern on a glacier surface in connection with the receding snow line. This may help better understand variability within supraglacial habitats, correct sampling procedures and inform biocenotic development models

    Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces

    Get PDF
    Polaromonas is one of the most abundant genera found on glacier surfaces, yet it’s ecology remains poorly described. Investigations made to date point towards a uniform distribution of Polaromonas phylotypes across the globe. We compared 43 Polaromonas isolates obtained from surfaces of Arctic and Antarctic glaciers to address this issue. 16S rRNA gene sequences, intergenic transcribed spacers (ITS) and metabolic fingerprinting showed great differences between hemispheres but also between neighboring glaciers. Phylogenetic distance between Arctic and Antarctic isolates indicated separate species. The Arctic group clustered similarly, when constructing dendrograms based on 16S rRNA gene and ITS sequences, as well as metabolic traits. The Antarctic strains, although almost identical considering 16S rRNA genes, diverged into 2 groups based on the ITS sequences and metabolic traits, suggesting recent niche separation. Certain phenotypic traits pointed towardscell adaptation to specific conditions on a particular glacier, like varying pH levels. Collected data suggest, that seeding of glacial surfaces with Polaromonas cells transported by various means, is of greater efficiency on local than global scales. Selection mechanisms present of glacial surfaces reduce the deposited Polaromonas diversity, causing subsequent adaptation to prevailing environmental conditions. Furthermore, interactions with other supraglacial microbiota, like algae cells may drive postselectional niche separation and microevolution within the Polaromonas genus

    The α2β1 integrin mediates the malignant phenotype on type I collagen in pancreatic cancer cell lines

    Get PDF
    Pancreatic cancer is characterised by a hallmark desmoplastic response that includes upregulated expression of the extracellular matrix, and type I collagen in particular. Recent studies indicate that pancreatic cancer cells stimulate type I collagen synthesis in adjacent stellate cells, and that this upregulated type I collagen expression promotes the malignant phenotype in tumour cells as defined by increased proliferation, resistance to chemically induced apoptosis, and increased tumorigenesis. The integrin specificity of this interaction between type I collagen and tumour cells was not identified, however. In the present study, we examined eight pancreatic cancer cell lines for adhesion, proliferation, and migration, on types I and IV collagen, fibronectin, laminin, and vitronectin, as well as integrin expression. Our results indicate, for the overwhelming majority of cell lines, that type I collagen promotes the strongest adhesion, proliferation, and migration relative to the other substrates tested. Utilising function-blocking monoclonal antibodies directed against particular integrin subunits in cell adhesion and migration inhibition assays, we demonstrate further that the malignant phenotype on type I collagen is mediated specifically by the α2β1 integrin. These results identify α2β1 integrin-mediated adhesion to type I collagen as a potential therapeutic target in the treatment of pancreatic cancer
    • …
    corecore