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Abstract 

Polaromonas is one of the most abundant genera found on glacier surfaces, yet it’s ecology 

remains poorly described. Investigations made to date point towards a uniform distribution of 

Polaromonas phylotypes across the globe. We compared 43 Polaromonas isolates obtained 

from surfaces of Arctic and Antarctic glaciers to address this issue. 16S rRNA gene 

sequences, intergenic transcribed spacers (ITS) and metabolic fingerprinting showed great 

differences between hemispheres but also between neighboring glaciers. Phylogenetic 

distance between Arctic and Antarctic isolates indicated separate species. The Arctic group 

clustered similarly, when constructing dendrograms based on 16S rRNA gene and ITS 

sequences, as well as metabolic traits. The Antarctic strains, although almost identical 

considering 16S rRNA genes, diverged into 2 groups based on the ITS sequences and 

metabolic traits, suggesting recent niche separation. Certain phenotypic traits pointed towards 
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cell adaptation to specific conditions on a particular glacier, like varying pH levels. Collected 

data suggest, that seeding of glacial surfaces with Polaromonas cells transported by various 

means, is of greater efficiency on local than global scales. Selection mechanisms present of 

glacial surfaces reduce the deposited Polaromonas diversity, causing subsequent adaptation to 

prevailing environmental conditions. Furthermore, interactions with other supraglacial 

microbiota, like algae cells may drive postselectional niche separation and microevolution 

within the Polaromonas genus. 
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Introduction 

 

Biogeography has always been a topic of major interest for the scientific community (Hubbel, 

2001). It was mainly focused on spatial distribution of multicellular organisms, neglecting the 

microbiome, including prokaryotes (Nemergut et al. 2011; Rammette and Tiedje, 2006). This 

was mainly due to the tremendous dispersal potential of microbes, and only environmental 

selection determining which species were abundant (Martiny et al. 2006). Indeed at the genus 

level, many prokaryotes have a cosmopolitan distribution in the environment at local, 

regional, and continental scales (Rodrigues et al. 2009). However, further investigations of 

genetic, phenotypic and physiological microbial features revealed profound differences 

between isolates obtained from geographically distant areas, showing that endemism was 

more common than previously thought. These findings best fitted well-isolated extreme 

habitats, where the inhospitable outside environment hindered the dispersal of highly 

specialized microbes, leading to geographic isolation and subsequent neutral divergence 

(Rammette and Tiedje, 2006). 

In many ways, glaciers may be seen as island-like habitats. Those extreme ecosystems are 

featured on every continent and separated by large expanses of temperate terrestrial and 

marine areas (Shiklomanov 1993; Paterson 1994). Although not entirely isolated, (connected 

to some extent through the upper atmosphere via the movement of cold air masses) they are 

an environment where  profound selective forces are at work (Hodson et al. 2008). 

The bacterial genus Polaromonas seems to be among the dominant bacterial taxa in glacial ice 

since closely aligned sequences were discovered by metagenomic studies of glacial habitats 
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worldwide, making Polaromonas one of the model taxons for investigating microbial 

distribution patterns in the terrestrial cryosphere (Willems, 2014).  

Papers regarding this topic were published previously (Darcy et al. 2011), using culture 

independent approach based on 16S rRNA gene sequences. Employment of large data sets to 

investigate genetic dispersal of Polaromonas phylotypes across global scales has led to the 

conclusion of a very weak genetic isolation between glacier habitats.  

As much as environmental small subunit ribosomal gene analysis has advanced our 

understanding of microbial communities it has its limitations due to persistence of 

extracellular DNA released into environment (Nielsen et al. 2007). Culture obtained bacterial 

isolates still can provide a great deal of information, amending direct-approach environmental 

studies (Chong et al. 2013). They create the opportunity of deep genetic analysis as well as 

investigation of physiological traits. In this regard we investigated the genetic and metabolic 

characteristics of 43 Polaromonas isolates originating from two Arctic and one Antarctic 

glacier to assess the variability of this genus on a local and a global scale. We hypothesize that 

isolates from neighboring glaciers will display similar characteristics, leading to a clear 

distinction between northern and southern polar region originating strains. To test this 

hypothesis we used 16S rRNA gene sequences along with the intergenic transcribed spacers 

(ITS) to discriminate closely related strains. Phenotypic microarray technology was employed 

to further diverge the isolates based on their metabolic profiles. Obtained data served to create 

dendrograms, highlighting the variability within those strains. This approach hasn’t been 

applied to Polaromonas isolates before, therefore providing valuable data for environmental 

microbiology. 

 

 

 

Materials and Methods 

 

Sites and sampling 

Hans and Werenskiold Glaciers are located on the north shore of the Hornsund Fiord at 

Spitsbergen Island (Svalbard Archipelago) in Arctic. Hans Glacier, a grounded tidewater 

glacier has a surface of about 57 km2 and its bottom reaches 100 m below sea level. 

Maximum ice thickness was estimated to be 400 m. Werenskiold Glacier is a land-based 

valley glacier next to Hans Glacier (Grzesiak et al. 2015b). Ecology Glacier is situated at the 

western shore of Admiralty Bay, on King George Island, South Shetland Archipelago, 
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Antarctica (Grzesiak et al. 2015a). 

Ice and cryoconite material were taken from 3 points on the glaciers surface in a transect 

running up the glacier, from glacial terminus area to the snow line at the top of the ablation 

zone. The transect on Hans Glacier had a length of 5120 m, on Werenskiold 

Glacier – 3420 m and on Ecology Glacier - 1841 m.  

Ice from the glacier’s surface (approx. 20cm) was crushed with an 70% ethanol solution  

sterilized and deionized water-washed Tonar ice auger (158 cm long, 130 mm diameter), 

collected using sterile plastic spatulas and placed into sterile plastic bags. The crushed ice was 

gathered from 5 points per sampling site, in an area of 100 m2. Pooled cores totaled 3 kg per 

site. Cryoconite holes were drained of water and sediment with a 160 mL sterile plastic 

syringe, and the material was transported in 500 mL sterile bottles to a field laboratory and 

processed within 2 hours. Five cryoconite holes per site were drained and pooled. 

 

Sample preparation and strain isolation 

Ice samples were melt in a refrigerator (4°C) before processing for microbiological analyses. 

Cryoconite material was shaken gently on a universal shaker (Premed, model 327) (120 rpm, 

20 min, 5°C). Suspensions were then returned to the refrigerator for 10–20 min to allow larger 

particles to settle. Aliquots of 1mL, 0.5mL and 0.1mL were spread-plated on R2A agar plates 

(Biocorp) and incubated in darkness at 4°C for 6 weeks. After 6 weeks of incubation, several 

colony types that differed in terms of size, color, shape, and other colony characteristics were 

selected per sample. Pure isolates derived from streaking colonies for isolation were passed 

through the nonstaining (KOH) test for determination of Gram reaction (Buck, 1982). Only 

those isolates that exhibited the reaction characteristic to Gram negative bacteria were kept for 

further investigation.  

 

Strain DNA isolation, 16S rRNA region and ITS amplification and sequencing 

DNA isolation from bacterial isolates for PCR was carried out using the boiling lysis method. 

Polaromonas cells were relatively easy to open using this simple method. Single colony was 

picked from R2A agar plate and suspended in 50 μl of sterile MiliQ water. The suspension 

was boiled in 98oC for 2 min and cooled to 8oC  in thermal cycler following centrifugation for 

1 min in microcentrifuge. 

 One microliter of supernatant was used for PCR. Amplification targeted two regions: 

(I) 16S rRNA gene, using universal primers 27F and 1492R (Lane, 1991) and (II) the internal 

transcribed spacer (ITS) between 16S rRNA gene and 23S rRNA gene region with use of the 
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primers 1407F, targeting inside the 16S rRNA gene gene and 242R, targeting inside the 23S 

rRNA gene gene (Lane, 1991). Both PCR amplifications were done in the same reaction 

conditions: 1 min of 95oC initial denaturation followed by 30 cycles of 95oC for 15s, 55oC 

annealing for 15s and elongation 72oC for 1 min, using DreamTaq polymerase (Thermo 

Scientific - Fermentas). Obtained PCR products (~1500bp for 16S rRNA gene fragment and 

~1100bp for ITS fragment) were purified using Exonuclease I/Alkaline phosphatase mix 

(Thermo Scientific- Fermentas). 16S rRNA gene amplicons were sequenced using internal 

16S rRNA gene primers: 341F, 518R and 928F (Weidner et al, 1996) and ITS PCR products 

were sequenced with PCR primers with use of BigDye Terminator v.3.1 chemistry and 

ABI3730xl genetic analyzer at the DNA Sequencing Laboratory (Institute of Biochemistry 

and Biophysics PAS). Sequencing reads were manually corrected and assembled into contigs 

using Seqman software (DNAStar).  

 

Microarray metabolic fingerprinting 

The selected strains were cultivated in R2A broth on a rotary shaker (WL-972, 

JWElectronics) for 7 days in 10 °C. After the given incubation time, the cells were harvested 

by centrifugation in a sterile 2 ml Eppendorf-type tube (9000 rpm for 3 min in a MPW-52 

microcentrifuge), washed twice and suspended in sterile 0.9% saline. Bacterial suspensions 

were added to a vial of GEN III MicroPlate IF C inoculation fluid until transmittance reached 

90%. 100 μL aliquots of each suspension were added to each well of Biolog GEN III 

microplates (Biolog Inc., Hayward,  CA). The plates were incubated in darkness at 10°C, the 

color development was measured at 590 nm with a microplate reader (OmniLog) and cellular 

respiration was measured kinetically by determining the colorimetric reduction of tetrazolium 

dye. Data were collected approximately three times a week over a 21 day period. The GEN III 

MicroPlates assesses the ability of a broad range of bacteria to utilize a pallet of different  

carbohydrates, amino and carboxylic acids, respiration in varying salinity and pH conditions 

as well as in the presence of various growth inhibitors (+ one control well with no-carbon and 

one positive control). Absorbance data from the different reading times (given in OmniLog 

arbitrary units) were first blanked against the time “zero” reading and then the values were 

blanked against the respective control well containing no-carbon source. Ability to respire in 

given conditions was scored as positive when it was ≥ 30% of the respective positive control 

well value. 
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Sequence identification, whole genome sequencing  and dendrogram construction 

16S rRNA gene gene fragments and ITS nucleotide sequences were aligned against reference 

sequence database GenBank (Johnson et al. 2008) using BLAST (Altschul et al. 1990) and 

using the RDP classifier online program (Cole et al. 2009). Sequences scoring in both 

databases as Polaromonas sp. were taken for further processing.  

The ITS region sequence was used to discriminate closely related strains, in total 43 isolates 

were typed and submitted for whole genome sequencing using Illumina technology. For this 

purpose total DNA was isolated from 50ml R2 broth cultures using CTAB/lysozyme method 

(Wilson et al. 1987). DNA quality was checked on agarose gel and template quantity was 

estimated using fluorometry by Qubit 2.0 fluorimeter. Illumina shotgun library was 

constructed using KAPA reagents. Sequencing was done in paired end mode on the MiSeq 

sequencer using 600 cycle chemistry kit. Obtained sequence reads were trimmed by quality 

using FastX toolkit and assembled into contigs using Newbler de novo assembler v3.0 

(Roche).  

Whole genome sequencing data of Polaromonas isolates was used to obtain complete 

sequence of 16S rRNA gene fragment and ITS regions. Bacterial rRNA gene region was 

extracted from the assembly dataset based on analysis of Newblers ContigGraph.txt result 

file. Contigs of the size c.a. 5,6kb with 5-6 times higher sequence coverage than the rest of the 

assembly were taken for analysis. 16S rRNA gene fragment and ITS isolate sequence was 

aligned to 5,6kb sequence region and manually inspected using Seqman (DNAStar) program. 

As a result complete nucleotide sequences of these two regions were extracted based on 16S 

rRNA gene fragment and ITS PCR primers positions. 16S rRNA gene and ITS sequences 

were deposited in GenBank under accession numbers KU586628-KU586713. 

Multiple sequence  alignments were performed using ClustalW program. Phylogenetic trees 

were constructed using MEGA6 software and Neighbour-Joining method. Bootstrap values 

for phylogenetic comparisons were based on 1,000 pseudoreplicates. Isolate designations 

indicate the hemisphere and glacier of origin: N – Arctic, S- Antarctica, H- Hans Glacier, W- 

Werenskiold Glacier, E – Ecology Glacier. 16S and ITS sequences of Polaromonas 

naphthalenivorans strain CJ2 and Polaromonas sp. strain JS666 were used as reference due to 

the complete gene sequences. Rhodoferax ferrireducens strain T118 sequences were used as 

outgroups. 

Clustering analysis of the Polaromonas strains responses in GEN III microplates was  

performed using the unweighted pair-group method and the Euclidean distance (UPGMA)  

for dendrogram construction. Data were analyzed statistically using Statistica version 10 
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(StatSoft Inc.) and Canoco ver. 4.5 for Windows (ter Braak and Šmilauer 2002) for the 

principal component analysis. PCA was conducted using metabolic and sequence-based 

molecular data. For the latter a percentage of dissimilarity between a given sequence and the 

respective reference sequence of Rhodoferax ferrireducens was calculated.  

 

 

Results 

Forty three Polaromonas isolates were obtained from surface of Arctic and Antarctic glaciers. 

Nineteen isolates came from Ecology Glacier surface (King George Island, Antarctica), 12 

from Hans Glacier and 12 from Werenskiold Glacier (each located at Spitsbergen Island, 

Arctic). Blastn searches indicate 99% similarity of the Antarctic strains to Polaromonas 

vacuolata, whereas Arctic strains showed closest similarity to Polaromonas 

naphthalenivorans, P. cryoconiti and P. glacialis.  

The phylogenetic tree based on complete 16S rRNA gene sequences is shown in Fig. 1. Three 

groups emerged when clustering the sequences. The Ecology Glacier strains form a uniform 

group, distant from the Arctic isolates, which clustered in two subgroups, comprising roughly 

the strains from a particular glacier, although with some isolates from the other glacier mixing 

in. The Antarctic strain E9S clustered loosely with the Arctic strains.  

The phylogenetic tree based on internal transcribed spacer (ITS) sequences is shown in Fig. 2. 

The Antarctic isolates are more differentiated. Two groups emerged within the Ecology 

Glacier isolated strains, the two major clusters of Arctic isolates remained, with the Antarctic 

isolate E9S clustering again with the Arctic group.  

The percentage of strains displaying positive responses in the GENIII plates are displayed in 

Tab. 1 and Tab. 1S.  All examined strains efficiently reduced tetrazolium violet (positive 

response) in pH 6, with L-lactic acid as a carbon source and in the presence of 1% sodium 

lactate. Other frequently utilized carbon sources were: glycerol, L-alanine, L-aspartic acid, L-

glutamic acid, D,L-malic acid and β-hydroxy-D,L-butyric acid.  Major differences between 

the isolates from particular glaciers have emerged when examining responses at pH5, α-D-

glucose, D-galacturonic acid, L-galactonic acid lactone, D-gluconic acid, γ-amino-butyric 

acid and acetic acid. 11 % of Antarctic strains respired in pH5, whereas over 50% of Arctic 

strains gave a positive response at this pH level. Carbohydrates were on average weakly 

assimilated, with the exception of α-D-glucose which was utilized by 47% of the Ecology 

Glacier strains, but none of the Arctic glacier strains. Gluconic acid was assimilated by the 
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majority of the Arctic strains and none on the Antarctic strains. Acetic acid utilization has 

been confirmed in a great majority of the Hans and Werenskiold Glaciers strains, yet only in 

26% of the Ecology Glacier strains. 

The tree based on metabolic traits of the strains obtained by means of GenIII Biolog Plates is 

shown in Fig. 3. Three distinct groups have emerged, similarly as in the phylogenetic tree 

based on complete 16S rRNA gene sequences. Within the Antarctic isolate group, two 

subgroups have formed similarly as in the ITS tree, although with some exceptions as 

indicated by the circled numerals. 

The average positive response numbers did not differ much between the Glaciers, with 

Ecology Glacier displaying 19.9 positive responses, Hans Glacier isolates 21.2 and 

Werenskiold Glacier isolates 25.5 (Fig. 4). Yet, the difference between Ecology and 

Werenskiold Glacier isolates response numbers was statistically significant (p<0.05).   

The principal component analysis clustered the Polaromonas strains in 3 groups, according to 

the glaciers which they were isolated from, with intermixing of single strains. Characteristics 

like 16S rRNA gene sequences, assimilation of acetate, gluconate and glucose differentiated 

the Arctic from the Antarctic strains. ITS sequences, ability to oxidize glycerol, D-

galacturonic acid and γ-amino-butyric acid differentiated arctic isolates into 2 groups (Fig 5).  

 

Discussion 

Members of the Polaromonas genus were isolated from a variety of habitats, were reported 

via direct diversity assessment methods from various ecosystems and are considered as a 

marker when investigating polar, marine and freshwater environments (Willems, 2014). In 

this study we present the genetic and metabolic variability within Polaromonas isolates 

obtained from supraglacial habitats, such as surface ice and cryoconite hole sediment from 

two Arctic and one Antarctic glacier.  

Biogeography, selection and adaptation 

Phylogenetic clustering of 16S rRNA gene sequences of investigated Polaromonas spp. 

differentiated them into 2 distinct groups – the Arctic and the Antarctic. 16S rRNA gene 

sequence difference between those two clades was 2.7% on average, which designates the 

Antarctic and the Arctic isolates as different species (Jogler et al., 2011). A similar situation 

was observed by Cameron et al. (2012), when examining bacterial communities in cryoconite 

holes of Arctic and Antarctic glaciers by means of T-RFLP. Dispersal of psychrophilic 

bacteria between poles was discussed before (Staley and Gosink, 1999). Migrating birds, cold, 
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deep sea currents and upper atmosphere air masses were taken into consideration as possible 

transport agents of polar microbiota. They were all dismissed due to high temperature 

amplitudes, slow rate or simply because of lack of evidence for their occurrence. However, 

Sattler et al. (2001) showed in following years, that bacterial cells can survive and even 

reproduce in supercooled cloud droplets at high altitudes. In this respect, Polaromonas sp. 

DNA sequences were recovered from air sampled at Fløyen Mountain, Norway (Fahlgren et 

al., 2010). Whether those cells are capable of withstanding a journey from one pole to another 

remains unclear. 

The Arctic cluster was separated into two groups, each of them containing a majority of 

isolates from one glacier clustered together with a few isolates from the neighboring glacier. 

Such “overlapping” of bacterial sequences was also recognized when analyzing community 

structures of 3 adjacent Svalbard glaciers (Edwards et al. 2013). The composition of the two 

groups, emerging on the 16S rRNA gene tree within the Arctic clade, remained the same on 

the ITS tree. Furthermore, the groups were maintained when constructing the tree based on 

phenotypic traits. This implies, that isolates within those two groups diverged genetically and 

metabolically from one another a considerable time in the past. Whether the dominance of one 

group on a glacier is due to selection pressure or simply by the proximity of the glacier to the 

groups primary reservoir remains unclear. However, profound differences in physico-chemical 

values of glacial surfaces not only between two hemispheres but also within one region were 

reported previously (Anesio et al. 2009; Grzesiak et al. 2015b; Cameron et al. 2012), which 

implies, that selection forces are of different quality on each glacier. Xiang et al. (2009) 

postulated that the shape of microbial communities on glacier is caused by the selection of 

deposited microbial cells. Investigations on the Ecology Glacier (Grzesiak et al. 2015a) and 

on the Werenskiold and Hans glaciers (Grzesiak et al. 2015b) regarding physico-chemical 

controls of microbial supraglacial communities may shed some light on the Polaromonas 

isolates’ metabolic traits as adaptations to conditions on a particular glacier. Most of the 

Polaromonas strains from Arctic glaciers were active in pH 5, whereas only 11% of the 

Antarctic strains could respire in such conditions. This could be explained by the pH of the 

glacier surface, where ice and cryoconites of Hans and Werenskiold Glaciers had a pH 

ranging from 3.34 to 4.77 (Grzesiak et al. 2015b), the Ecology Glacier surface displayed pH 

in the range of 6.10 – 7.15 (Grzesiak et al. 2015a). The lack of activity of investigated 

Polaromonas cells at salt concentrations 4% and above can also be explained by supraglacial 

conditions. Dissolved salts amounts in Ecology Glacier cryoconite hole water were minimal, 

as indicated by its low conductivity, not exceeding 3.4 μS cm-1 (Mieczan et al. 2013). 
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Polaromonas vacuolata, isolated from Antarctic sea ice, is the only halophile within this 

genus described to date, although its salinity range of growth is quite high (0-6%) (Irgens et 

al. 1996). Considering marine aerosol dispersal by high velocity Antarctic winds (Pearce et al. 

2009), supraglacial strains obtained in this study, closely related to P. vacuolata may be of sea 

origin.  

High affinity of investigated Polaromonas strains for simple organic acids, hints an 

abundance of those carbon compounds in the supraglacial environment. Sources of those 

acids may be diverse, allochtonic, as well as autochtonic (Stibal et al. 2008). It has been 

proven on several occasions, that in many aquatic environments organic acids are a result of 

photodegradation of recalcitrant substances, like humic and fulvic acids (Wetzel et al. 1995; 

Watanabe et al. 2009). They can also be produced on the glacier surface via microbes, 

leaching from live cells during stress conditions (Medina-Sànchez and Villar-Argiz 2006) or 

being actively released to solubilize phosphate and other biogenic elements (Rodriguez and 

Fraga, 1999). Scavenging of those small molecules may give the Polaromonas an advantage 

in those oligotrophic conditions. 

 

Microevolution, phenotype and niche separation 

The isolates comprising the Antarctic branch of the 16S rRNA gene tree were separated into 

two branches on the ITS tree. As the ITS sequences evolve more quickly than the 16S rRNA 

gene sequences it is safe to assume that the divergence within this group has occurred fairly 

recently, perhaps even on the glacier itself, following deposition and selection. Some isolates 

still share properties not present in their closest genetic relatives. This could further support 

the recent divergence of those two groups. Differences in ITS sequences and phenotypes 

among bacteria sharing the same 16S rRNA gene sequence were observed before (Jaspers and 

Overman, 2004; Brown et al. 2005) and were repeatedly linked to niche separation (Brown 

and Fuhrman, 2005; Hahn and Pöckl, 2005; Jogler et al., 2011). Those authors pointed spatial, 

temporal, temperature and dissolved organic carbon quality-dependent ecological niche 

differentiation. Spatio-temporal causes seem not to apply to the diversification observed in 

this study, as the sampling on the Ecology Glacier surface was undertaken within a few hours 

and the clusters contain isolates from several sampling points. Chemical composition within 

the particular site or even biological interactions might be therefore responsible. Several 

features of the Antarctic Polaromonas strains points towards host-symbiont interactions as 

possible drivers of such diversification. Nearly half of the strains from Ecology Glacier 
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surface exhibited D-glucose utilization capability, but none of those strains respired when 

gluconic acid was the only carbon source, which was readily consumed by Arctic strains. In 

the heavily solar radiation impacted glacial surfaces (Säwstrom et al. 2002) glucose may 

easily be oxidized inter alia to gluconic acid (Phillips and Rickards, 1963). The phenomenon 

that the Antarctic strains utilize glucose yet lack the ability to degrade more complex 

carbohydrates like dextrin may suggest that they tightly adhere to algae cells, which secrete 

simple carbohydrates in stress conditions, that are immediately consumed by bacteria, before 

being oxidized. Microscope observations of aggregates containing algae and bacteria were 

confirmed from Ecology Glacier surface (Fig. 6). Such host-symbiont interaction may explain 

the separation within the Ecology Glacier isolates, where the niche separations occur in 

accordance with host specificity. Such phenomenon has been observed by Šimek et al. (2011), 

where Limnohabitans sp. strains were proposed to respond to different extracellular algae-

derived substances by niche separation. Antarctic Polaromonas strains also have on average 

lower assimilation capabilities than Arctic strains. Loss of function in symbionts were 

connected with growing dependancy to host metabolites (Ochman and Moran, 2001). 

Furthemore, Polaromonas-like bacterium has been found in a consortium with a phototrophic 

partner (Kanzler et al. 2005), suggesting  that within this genus, symbiotic interaction might 

be common. 

In conclusion, the presented data amend the information on Polaromonas spp. biogeography, 

evolution and physiology. Members of the genus Polaromonas occupy supraglacial habitats of 

Arctic and Antarctic glaciers. Darcy et al. (2011) postulate a global dispersal of most 

Polaromonas phylotypes. Distribution by air currents is likely the way of propagating the 

cells of this genus, but the efficiency of seeding a glacial surface with cells that were 

transported across great distances and from a variety of different environments might be 

greater on local than global scales. Selection mechanisms caused by prevailing environmental 

conditions on a glacier may drastically reduce the deposited diversity. Furthermore, biotic and 

abiotic factors may drive postselectional niche separation and microevolution within the 

Polaromonas genus.  
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Metabolic trait 
Glacier  

Metabolic trait 
Glacier 

E H W E H W 

ph6 100 100 100 Vancomycin  58 67 67 

ph5 11 50 75 Tetrazolium Violet  11 0 0 

1% NaCl  100 92 100 Tetrazolium Blue    5 58 33 

α-D-Glucose  47 0 0 p-Hydroxy-Phenylacetic Acid  0 17 8 

D-Fucose  5 0 0 Methyl Pyruvate  42 42 75 

1% Sodium Lactate  100 100 100 L-Lactic Acid  100 100 100 

D-Mannitol  32 0 0 α-Keto-Glutaric Acid  42 42 67 

D-Arabitol  32 0 0 D-Malic Acid  74 42 100 

Glycerol  63 25 83 L-Malic Acid  68 92 100 

Rifamycin SV  95 100 100 Bromo-Succinic Acid  37 25 75 

L-Alanine  84 67 92 Lithium Chloride  11 0 0 

L-Aspartic Acid  95 100 100 Tween 40  37 75 42 

L-Glutamic Acid  89 92 100 γ-Amino-Butyric Acid  5 42 83 

L-Pyroglutamic Acid  37 8 0 α-Hydroxy-Butyric Acid  42 33 58 

Lincomycin  100 67 100 β-Hydroxy-D,L-Butyric Acid  89 100 100 

D-Galacturonic Acid  5 33 83 α-Keto-Butyric Acid  32 25 8 

L-Galactonic Acid Lactone  5 8 75 Acetoacetic Acid 47 67 17 

D-Gluconic Acid  0 67 100 Propionic Acid  11 17 50 

D-Glucuronic Acid  26 33 58 Acetic Acid  26 100 92 

Quinic Acid  5 17 0 Aztreonam  63 50 42 

D-Saccharic Acid  0 8 33 Sodium Butyrate  0 33 25 
Tab. 1. Percentage of positive responses of Polaromonas isolates in selected wells showing 

differences and similarities between glaciers. H- Hans Glacier, W- Werenskiold Glacier, E – 

Ecology Glacier. 
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Tab. 1S. Percentage of Polaromonas strains exhibiting positive reactions in wells of a GENIII microplate. H- Hans Glacier isolates, W- Werenskiold Glacier 

isolates, E – Ecology Glacier isolates.  

Tween 40 

E 37% 

H 75% 

W 42% 
 

γ-Amino-Butryric 
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E 5% 

H 42% 

W 83% 
 

α-Hydroxy-Butyric 
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H 100% 

W 100% 
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Sodium Bromate 

E 0% 
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W 0% 
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Fig. 1. Phylogenetic tree constructed using complete 16S rRNA gene sequences of Polaromonas isolates. 

Isolate designations indicate the hemisphere and glacier of origin (N – Arctic, S- Antarctica, H- Hans 

Glacier, W- Werenskiold Glacier, E – Ecology Glacier). The tree was built with the neighbor-joining 

method. Bootstrap values are indicated at the nodes. Rhodoferax ferrireducens strain T118 sequence has 

been used as an outgroup. 
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Fig. 2. Phylogenetic tree constructed using complete ITS sequences of Polaromonas isolates. Isolate 

designations indicate the hemisphere and glacier of origin (N – Arctic, S- Antarctica, H- Hans Glacier, W- 

Werenskiold Glacier, E – Ecology Glacier). The tree was built with the neighbour-joining method. Bootstrap 

values are indicated at the nodes. Rhodoferax ferrireducens strain T118 sequence have been used as 

outgroups.  - ITS Ecology Glacier group 1;   - ITS Ecology Glacier group 2. 
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Fig. 3. Dendrogram constructed using data obtained from GENIII microplate metabolic features of 

Polaromonas isolates. Isolate designations indicate the hemisphere and glacier of origin (N – Arctic, S- 

Antarctica, H- Hans Glacier, W- Werenskiold Glacier, E – Ecology Glacier).  - ITS Ecology Glacier group 

1;   - ITS Ecology Glacier group 2. 
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Fig 4. Number of positive reactions in GENIII microplates of Polaromonas isolates from a particular glacier. 

Asterisk indicates a statistical significance of  p<0.05.  

 

 

 

Fig 5. Principal component analysis clustering of isolates based on 16S rRNA gene, ITS sequences and 

metabolic fingerprinting. Square – Ecology Glacier isolates, Triangle – Hans Glacier isolates, Circle – 

Werenskiold Glacier isolates. 
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Fig. 6. Microphotograph of algae and bacteria agglomerate from Ecology Glacier surface: A – DAPI stained 

bacterial cells (black arrow) imbedded in extracellular matrix of a round algae cell (under UV light). B – 

autofluorescence of the same algae cell under green-light excitation. 


