7,658 research outputs found

    On Finite 4D Quantum Field Theory in Non-Commutative Geometry

    Get PDF
    The truncated 4-dimensional sphere S4S^4 and the action of the self-interacting scalar field on it are constructed. The path integral quantization is performed while simultaneously keeping the SO(5) symmetry and the finite number of degrees of freedom. The usual field theory UV-divergences are manifestly absent.Comment: 18 pages, LaTeX, few misprints are corrected; one section is remove

    Noncommutative Chiral Anomaly and the Dirac-Ginsparg-Wilson Operator

    Get PDF
    It is shown that the local axial anomaly in 22-dimensions emerges naturally if one postulates an underlying noncommutative fuzzy structure of spacetime . In particular the Dirac-Ginsparg-Wilson relation on SF2{\bf S}^2_F is shown to contain an edge effect which corresponds precisely to the ``fuzzy'' U(1)AU(1)_A axial anomaly on the fuzzy sphere . We also derive a novel gauge-covariant expansion of the quark propagator in the form 1DAF=aΓ^L2+1DAa\frac{1}{{\cal D}_{AF}}=\frac{a\hat{\Gamma}^L}{2}+\frac{1}{{\cal D}_{Aa}} where a=22l+1a=\frac{2}{2l+1} is the lattice spacing on SF2{\bf S}^2_F, Γ^L\hat{\Gamma}^L is the covariant noncommutative chirality and DAa{\cal D}_{Aa} is an effective Dirac operator which has essentially the same IR spectrum as DAF{\cal D}_{AF} but differes from it on the UV modes. Most remarkably is the fact that both operators share the same limit and thus the above covariant expansion is not available in the continuum theory . The first bit in this expansion aΓ^L2\frac{a\hat{\Gamma}^L}{2} although it vanishes as it stands in the continuum limit, its contribution to the anomaly is exactly the canonical theta term. The contribution of the propagator 1DAa\frac{1}{{\cal D}_{Aa}} is on the other hand equal to the toplogical Chern-Simons action which in two dimensions vanishes identically .Comment: 26 pages, latex fil

    Regularization of 2d supersymmetric Yang-Mills theory via non commutative geometry

    Get PDF
    The non commutative geometry is a possible framework to regularize Quantum Field Theory in a nonperturbative way. This idea is an extension of the lattice approximation by non commutativity that allows to preserve symmetries. The supersymmetric version is also studied and more precisely in the case of the Schwinger model on supersphere [14]. This paper is a generalization of this latter work to more general gauge groups

    A New Noncommutative Product on the Fuzzy Two-Sphere Corresponding to the Unitary Representation of SU(2) and the Seiberg-Witten Map

    Get PDF
    We obtain a new explicit expression for the noncommutative (star) product on the fuzzy two-sphere which yields a unitary representation. This is done by constructing a star product, λ\star_{\lambda}, for an arbitrary representation of SU(2) which depends on a continuous parameter λ\lambda and searching for the values of λ\lambda which give unitary representations. We will find two series of values: λ=λj(A)=1/(2j)\lambda = \lambda^{(A)}_j=1/(2j) and λ=λj(B)=1/(2j+2)\lambda=\lambda^{(B)}_j =-1/(2j+2), where j is the spin of the representation of SU(2). At λ=λj(A)\lambda = \lambda^{(A)}_j the new star product λ\star_{\lambda} has poles. To avoid the singularity the functions on the sphere must be spherical harmonics of order 2j\ell \leq 2j and then λ\star_{\lambda} reduces to the star product \star obtained by Preusnajder. The star product at λ=λj(B)\lambda=\lambda^{(B)}_j, to be denoted by \bullet, is new. In this case the functions on the fuzzy sphere do not need to be spherical harmonics of order 2j\ell \leq 2j. Because in this case there is no cutoff on the order of spherical harmonics, the degrees of freedom of the gauge fields on the fuzzy sphere coincide with those on the commutative sphere. Therefore, although the field theory on the fuzzy sphere is a system with finite degrees of freedom, we can expect the existence of the Seiberg-Witten map between the noncommutative and commutative descriptions of the gauge theory on the sphere. We will derive the first few terms of the Seiberg-Witten map for the U(1) gauge theory on the fuzzy sphere by using power expansion around the commutative point λ=0\lambda=0.Comment: 15 pages, typos corrected, references added, a note adde

    The One-loop UV Divergent Structure of U(1) Yang-Mills Theory on Noncommutative R^4

    Get PDF
    We show that U(1) Yang-Mills theory on noncommutative R^4 can be renormalized at the one-loop level by multiplicative dimensional renormalization of the coupling constant and fields of the theory. We compute the beta function of the theory and conclude that the theory is asymptotically free. We also show that the Weyl-Moyal matrix defining the deformed product over the space of functions on R^4 is not renormalized at the one-loop level.Comment: 8 pages. A missing complex "i" is included in the field strength and the divergent contributions corrected accordingly. As a result the model turns out to be asymptotically fre

    A compact and robust diode laser system for atom interferometry on a sounding rocket

    Full text link
    We present a diode laser system optimized for laser cooling and atom interferometry with ultra-cold rubidium atoms aboard sounding rockets as an important milestone towards space-borne quantum sensors. Design, assembly and qualification of the system, combing micro-integrated distributed feedback (DFB) diode laser modules and free space optical bench technology is presented in the context of the MAIUS (Matter-wave Interferometry in Microgravity) mission. This laser system, with a volume of 21 liters and total mass of 27 kg, passed all qualification tests for operation on sounding rockets and is currently used in the integrated MAIUS flight system producing Bose-Einstein condensates and performing atom interferometry based on Bragg diffraction. The MAIUS payload is being prepared for launch in fall 2016. We further report on a reference laser system, comprising a rubidium stabilized DFB laser, which was operated successfully on the TEXUS 51 mission in April 2015. The system demonstrated a high level of technological maturity by remaining frequency stabilized throughout the mission including the rocket's boost phase

    Causal Consistency of Structural Equation Models

    Get PDF
    Complex systems can be modelled at various levels of detail. Ideally, causal models of the same system should be consistent with one another in the sense that they agree in their predictions of the effects of interventions. We formalise this notion of consistency in the case of Structural Equation Models (SEMs) by introducing exact transformations between SEMs. This provides a general language to consider, for instance, the different levels of description in the following three scenarios: (a) models with large numbers of variables versus models in which the `irrelevant' or unobservable variables have been marginalised out; (b) micro-level models versus macro-level models in which the macro-variables are aggregate features of the micro-variables; (c) dynamical time series models versus models of their stationary behaviour. Our analysis stresses the importance of well specified interventions in the causal modelling process and sheds light on the interpretation of cyclic SEMs.Comment: equal contribution between Rubenstein and Weichwald; accepted manuscrip

    Industrial practitioners' mental models of adversarial machine learning

    Get PDF
    Although machine learning is widely used in practice, little is known about practitioners' understanding of potential security challenges. In this work, we close this substantial gap and contribute a qualitative study focusing on developers' mental models of the machine learning pipeline and potentially vulnerable components. Similar studies have helped in other security fields to discover root causes or improve risk communication. Our study reveals two facets of practitioners' mental models of machine learning security. Firstly, practitioners often confuse machine learning security with threats and defences that are not directly related to machine learning. Secondly, in contrast to most academic research, our participants perceive security of machine learning as not solely related to individual models, but rather in the context of entire workflows that consist of multiple components. Jointly with our additional findings, these two facets provide a foundation to substantiate mental models for machine learning security and have implications for the integration of adversarial machine learning into corporate workflows, decreasing practitioners' reported uncertainty, and appropriate regulatory frameworks for machine learning security
    corecore